The 1%t International symposium on I K/Ii ‘ U

Parallel Computing and Distributed Systems
: UNI V ERSITY

Sept. 21-22 | 2024 Singapore

Paper ID: PD104

New Parallel Order Maintenance Data

Structure

niyersity, ON Canada)
ity, ON Canada)

Bin Guo (
Emil Sekerinski (


mailto:binguo@trentu.ca
mailto:emil@mcmaster.ca

Parallel Order Maintenance (OM) Data Structure

* Maintain a total order of unique items in a list, denoted by O

* Three operations

* Order(x, y): if x precedes y in the order list O
* Insert(x, y): insert y after xin Q
* Delete(x): delete x from O

* The naive implementation is to use Balanced Binary Search Tree

* Dietz et al. propose the OM data structure [1,2]
* use labels to comparing



Compare The time complexities

Naive Balance
Binary Search Tree

Order O(logN) 0(1)
Insert O(logN) Amortized O(1)
Delete O(logN) 0(1)

For N items in total



Examples: Order and Delete

e Initial Labels (64 bits) with interval 232
Graph
Topological 232 . 232 . D32
Sorting
O—® ==, O—O—O—O—C

directed acyclic graph OM data structure with Ordered List

e Labels indicate the order of vertices
* Order(a, b) by comparing labels, 0 < 23, so ais ahead b
* Delete(b) with not affect the labels



Examples: Insert

20 — 1 _ 9 229 230 231 232 232 3. 232

insert x; x2 X3 . X31 X3

* Insert(a, x): x is in the middle between a and a.next
* At most 32 items can Insert after a, without changing labels
* It will trigger the Relabel operation when insert @



Examples: Relabel

18 54

* Relabel(a): start from a, find the gap that is L(x,,) — L(a) > j?> for traversing j items
* Find x,5 withj=7,sothat 2 — 0 = 64 > 7% = 49

* Relabel from x5, to x,¢, then insert x5; with label 4

« The amortized running time is O(log ). Can be reduce to amortized 0(1) by using groups (details in my paper)



Our Contribution: Parallel OM data structure

 Parallel-Delete and Parallel-Insert
* In the double-linked list, we lock the related items

delete
Insert
O %; 20 229 230 231 232 232 232
lock lock lock lock lock
ig;h rl]oik 2 ir;a/ﬁzzbvgren INSerting X3 * Welockx,, band cwhen deleting b
8N X33 * The labels are not affected

The relabel process is triggered, which
also need to lock related vertices



Our Contribution: Parallel OM data structure (2)

* We desire lock-free Parallel-Order Operation
* The Relabel may create labels that not correctly represent the order.

0 9 18 2%=4 23 24 2° 26

(D)) )l ()

* Relabel not finish, only updating x3; and x3q
e The labels are incorrect to show order

),

o —o— e ——e-6—0
 When Relabel finish, labels correctly show the order H
* For parallel Order and Insert operations, the labels must correctly show the order at any time



Our Contribution: Parallel OM data structure (3)

* We propose a new Relabel operation

The Relabel with reverse order from the later item

index 1O 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

old label 11213 14
Ul\’vg\\b /U4
tempral
\abel 3 6 9 12
U1 (D) U3 U4

Figure 4. An example of the AssignlLabel procedure.

* Alllabels can be correctly indicating the order at any time snap
* The Parallel Order is lock free



Application: Core Maintenance

B Insert & Delete I Order

107 5

10° 5

number of operations

10° -

livej

patent
wikitalk
roadNet-CA
dbpedia
baidu
pokec
wiki-talk-en
wiki-links-en
ER

BA

RMAT

Figure 2. The number of OM operations for core mainte-
nance by inserting 100, 000 random edges into each graph.

Typically, a large portion (more
than 90%) is Order operations
Only small portion (less than
10%) are Insert and Delete
Operations

This is why lock-free Order is
meaningful

It is a break-through for real
applications



Experiments with 64 workers

10° 4

107 4

10! ; \
100 4

ning time (ms)

103

running time (ms)

run

103 4

running time (ms)
ning time (ms)

103 -

run

101 4

Fig. 1: The running times for NO, FEW, MANY, and MAX
cases. We have that x-axis shows the number of workers, and
the y-axis displays the execution time (in milliseconds), both
on an exponential scale.

:insert 10 million items into O.

‘der: compare its order of 10
million time.

: delete all inserted items, a
total of 10 million

:insert 10 million items, mixed
with 100 million Order operations
(simulate in applications

No relabel case: insert 10 million
items into 10 million positions

Few relabel case: insert 10 million
items into 1 million positions

relabel case: insert 10 million
items into 1000 positions

_ relabel case: insert 10 million
Iitems into 1 positions



Conclusion

* The parallel Order operations * In future, we attempt to make
achieve the best speedups Insert and Delete as lock-free
* By using Muti-CAS

* Also, apply parallel OM data
structure to many other
applications

* like Ordered Set
* UML



Reference

e [1] Paul Dietz and Daniel Sleator. Two algorithms for maintaining
order in a list. In Proceedings of the nineteenth annual ACM
symposium on Theory of computing, pages 365—-372, 1987.

e [2] Michael A Bender, Richard Cole, Erik D Demaine, Martin Farach-
Colton, and Jack Zito. Two simplified algorithms for maintaining order
in a list. In European Symposium on Algorithms, pages 152-164.

Springer, 2002.



	Slide 1
	Slide 2: Parallel Order Maintenance (OM) Data Structure
	Slide 3: Compare The time complexities
	Slide 4: Examples: Order and Delete
	Slide 5: Examples: Insert
	Slide 6: Examples: Relabel
	Slide 7: Our Contribution: Parallel OM data structure
	Slide 8: Our Contribution: Parallel OM data structure (2)
	Slide 9: Our Contribution: Parallel OM data structure (3)
	Slide 10: Application: Core Maintenance
	Slide 11: Experiments with 64 workers 
	Slide 12: Conclusion
	Slide 13: Reference

