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• Graphs are important data structures 
used in many applications:
• Social Networks: Facebook, Twitter
• Knowledge Networks: Dbpedia
• Biological Networks and Road Networks

• Data graphs can be large now:
• Facebook has 2.9 billion active users
• DBpedia has 6.6 million entities and 13 

billion pieces of information
• Large data graphs require data 

analytics Graph algorithms:
• Strongly Connected Components
• Minimum Spanning Forest
• Shortest Path Distance
• 𝑘-Core

Motivation

Application of 𝒌-Core in Economy

Sequential Order-based Core Maintenance Studies of Core Maintenance
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• Dynamic graphs change with new edges inserted or old edge 
removed, e.g. temporal graphs

• Recalculate the core numbers is expensive
• Instead, we maintain the core numbers in dynamic graphs

• In Stock Networks, the max core is dominated by Finance in 2003 [1]
• Finance has huge effects to economy 

• Existing parallel methods are based on the 
Traversal algorithms

• We are the first to parallelize the Order
algorithm

• 𝒌-Core Decomposition is to 
Find the largest subgraph, in 
which each node has at 
least 𝑘 neighbours

• The core number is the 
largest value of 𝑘

• It is to find the dense part in 
a graph 

Edge Insertion:
• Maintain the core numbers when inserting one edge (u, a)
• The key step is to identify two set:𝑉∗and 𝑉"
• Two important algorithms: Traversal [2] and Order [3]
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𝑉∗ All vertices with core 
number changed

𝑉" All searched vertices
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much faster 

OurI Our Insert [6]

OurR Our Remove [6]

JEI Join Edge Insert [5]

JER Join Edge Remove [5]

MI Match Edge Insert [4]

MR Match Edge Remove [4]

OI Sequential Order Insert [3]

OR Sequential Order Remove [3]

TI Sequential Traversal Insert [2]

TR Sequential Traversal Remove [2]
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By inserting an edge (u, a), 
the core number of a 
increased from 1 to2

Traversal Order
𝑉∗ = 𝑎

𝑉" = 𝑎, 𝑏, 𝑐, 𝑑
𝑉∗ = 𝑎
𝑉" = 𝑎

By traversing the vertices in DFS By traversing the vertices in order 
of {d, c, b, a, e}, so that b, c, d can 

be omitted
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Parallel Edge Insertion:
• Maintain the core numbers when inserting 

two edge (u, a) and (w, e) in parallel
• For synchronization, the vertices in 𝑉" are 

locked, all associated edges are lock free. 
• Since vertices are much less than edges in

graphs, the synchronization overhead is 
significantly reduced

𝑉∗ = 𝑎, 𝑒
𝑉" = 𝑎, 𝑒

Experiment Evaluation


