
Parallel Order-Based Core Maintenance in Dynamic Graphs 
Bin Guo (guob15@mcmaster.ca)• Emil Sekerinski

Department of Computing and Software, McMaster University

• Graphs are important data structures 
used in many applications:
• Social Networks: Facebook, Twitter
• Knowledge Networks: Dbpedia
• Biological Networks and Road Networks

• Data graphs can be large now:
• Facebook has 2.9 billion active users
• DBpedia has 6.6 million entities and 13 

billion pieces of information
• Large data graphs require data 

analytics Graph algorithms:
• Strongly Connected Components
• Minimum Spanning Forest
• Shortest Path Distance
• 𝑘-Core

Motivation

Application of 𝒌-Core in Economy

Sequential Order-based Core Maintenance Studies of Core Maintenance

References

• Dynamic graphs change with new edges inserted or old edge 
removed, e.g. temporal graphs

• Recalculate the core numbers is expensive
• Instead, we maintain the core numbers in dynamic graphs

• In Stock Networks, the max core is dominated by Finance in 2003 [1]
• Finance has huge effects to economy 

• Existing parallel methods are based on the 
Traversal algorithms

• We are the first to parallelize the Order
algorithm

• 𝒌-Core Decomposition is to 
Find the largest subgraph, in 
which each node has at 
least 𝑘 neighbours

• The core number is the 
largest value of 𝑘

• It is to find the dense part in 
a graph 

Edge Insertion:
• Maintain the core numbers when inserting one edge (u, a)
• The key step is to identify two set:𝑉∗and 𝑉"
• Two important algorithms: Traversal [2] and Order [3]

Our Parallel Order-Based Core Maintenance
• [1] Burleson-Lesser, Kate, et al. "K-core robustness in ecological and financial networks." Scientific 

reports 10.1 (2020): 1-14
• [2] Ahmet Erdem Sarıyüce, Buğra Gedik, Gabriela Jacques-Silva, Kun-Lung Wu, and Ümit V Çatalyürek. 

Incremental 𝑘 -core decomposition: algorithms and evaluation. The VLDB Journal, 25(3):425–447, 2016
• [3] Yikai Zhang, Jeffrey Xu Yu, Ying Zhang, and Lu Qin. A fast order-based approach for core 

maintenance. In Proceedings - International Conference on Data Engineering, pages 337–348, 2017.
• [4] Hai Jin, Na Wang, Dongxiao Yu, Qiang Sheng Hua, Xuanhua Shi, and Xia Xie. Core Maintenance in 

Dynamic Graphs: A Parallel Approach Based on Matching. IEEE Transactions on Parallel and Distributed 
Systems, 29(11):2416–2428, nov 2018.

• [5] Qiang-Sheng Hua, Yuliang Shi, Dongxiao Yu, Hai Jin, Jiguo Yu, Zhipen Cai, Xiuzhen Cheng, 
and Hanhua Chen. Faster parallel core maintenance algorithms in dynamic graphs. IEEE Transactions on 
Parallel and Distributed Systems, 31(6):1287–1300, 2019.

• [6] Parallel Order-Based Core Maintenance in Dynamic Graphs B Guo, E Sekerinski – ICPP 2023
• [7] Ahmet Erdem Saríyüce, Buğra Gedik, Gabriela Jacques-Silva, Kun-Lung Wu, and Ümit V Çatalyürek. 

Streaming algorithms for 𝑘 -core decomposition. Proceedings of the VLDB Endowment, 6(6):433–444, 
2013.

• [8] Na Wang, Dongxiao Yu, Hai Jin, Chen Qian, Xia Xie, and Qiang-Sheng Hua. Parallel algorithm for core 
maintenance in dynamic graphs. In 2017 IEEE 37th International Conference on Distributed Computing 
Systems (ICDCS), pages 2366–2371. IEEE, 2017.

• [9] Guo, Bin, and Emil Sekerinski. "Simplified Algorithms for Order-Based Core Maintenance." arXiv 
preprint arXiv:2201.07103 (2022).

max core 
number 

1-core

1-core
2-core

1-core
2-core

3-core

w u

v a

b

e

d c

1-core
2-core

3-core

a

w u

v a

b

e

d c

1-core
2-core

3-core

a

𝑉∗ All vertices with core 
number changed

𝑉" All searched vertices
We are here

Sequential

Parallel

2013

Ahmet Erdem
Saríyüce et al., 
Streaming 
VLDB[7]

2016 2017 2018 2019 2022

Ahmet Erdem 
Sarıyüce et 
al., Traversal
VLDB [2]

Yikai Zhang et 
al., Order
ICDE[3]

Na Wang et 
al., Superior
Edge Set
ICDCS [8]

Hai Jin et al., 
Match Edge, 
ICDCS [4]

Qiang-Sheng 
Hua et al., Join 
Edge, TPDS [5]

Bin Guo et al., 
Simplified Order 
[9]

Bin Guo et al., 
Parallel Order
[6]

much faster 

OurI Our Insert [6]

OurR Our Remove [6]

JEI Join Edge Insert [5]

JER Join Edge Remove [5]

MI Match Edge Insert [4]

MR Match Edge Remove [4]

OI Sequential Order Insert [3]

OR Sequential Order Remove [3]

TI Sequential Traversal Insert [2]

TR Sequential Traversal Remove [2]

Number of workers 

Ru
nn

in
g 

tim
e 

(m
s)

core number 1

core number 2

core number 3

By inserting an edge (u, a), 
the core number of a 
increased from 1 to2

Traversal Order
𝑉∗ = 𝑎

𝑉" = 𝑎, 𝑏, 𝑐, 𝑑
𝑉∗ = 𝑎
𝑉" = 𝑎

By traversing the vertices in DFS By traversing the vertices in order 
of {d, c, b, a, e}, so that b, c, d can 

be omitted

Lock1

4 3

2

w u

v a

b

e

d c

a
e

aLock

w

v

b

4

u

Parallel Edge Insertion:
• Maintain the core numbers when inserting 

two edge (u, a) and (w, e) in parallel
• For synchronization, the vertices in 𝑉" are 

locked, all associated edges are lock free. 
• Since vertices are much less than edges in

graphs, the synchronization overhead is 
significantly reduced

𝑉∗ = 𝑎, 𝑒
𝑉" = 𝑎, 𝑒

Experiment Evaluation


