
JOURNAL OF IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS CLASS FILES, VOL. 18, NO. 9, SEPTEMBER 2020 1

Parallel Order-Based Core Maintenance in Dynamic
Graphs

Bin Guo, Emil Sekerinski

Abstract—The core number of vertices in a graph is one of the
most well-studied cohesive subgraph models due to linear running
time algorithms. In practice, many data graphs are dynamic
graphs that continuously change by inserting and removing
edges. The core numbers are updated in dynamic graphs with
edge insertions and deletions, called core maintenance. When a
burst of a large number of inserted or removed edges comes in,
these must be handled on time to keep up with the data stream.
There are two main sequential algorithms for core maintenance,
TRAVERSAL and ORDER. Experiments show that the ORDER
algorithm significantly outperforms the TRAVERSAL algorithm
over various real graphs.

To the best of our knowledge, all existing parallel approaches
are based on the TRAVERSAL algorithm. These algorithms
exploit parallelism only for vertices with different core numbers;
they reduce to sequential algorithms when all vertices have
the same core numbers. This paper proposes a new parallel
core maintenance algorithm based on the ORDER algorithm. A
distinguishing properly is that the algorithm allows parallelism
even for graphs where all vertices have the same core number.
Extensive experiments are conducted over real-world, temporal,
and synthetic graphs on a multicore machine. The results show
that for inserting and removing a batch of edges using 16 workers,
the proposed method achieves speeds of up to 289 times and 10
times compared to the most efficient existing method.

Index Terms—dynamic graphs, parallel, k-core maintenance,
multicore, shared memory.

I. INTRODUCTION

GRaphs are widely used to model complex networks. As
one of the most well-studied cohesive subgraph models,

the k-core is the maximal subgraph such that all vertices
have degrees at least k. The core number of a vertex is the
maximum value of k such that this vertex is contained in the
subgraph of k-core vertices [1], [2]. The core numbers can be
computed in linear time O(m) by the BZ algorithm [1], where
m is the number of edges in a graph. Due to such computa-
tional efficiency, the core number of a vertex is a parameter
of density extensively used in numerous applications [2],
such as knowledge discovery [3], gene expression [4], social
networks [5], ecology [6], and finance [6].

In [7], Malliaros et al. summarize the main research on k-
core decomposition from 1968 to 2019. Many papers focus on
computing the core in static graphs [1], [8]–[11]. In practice,
many data graphs are large and continuously changing. It is
of practical importance to identify the dense range as fast
as possible after a change, e.g., when multiple edges are
inserted or removed. For example, it is necessary to quickly

Bin Guo is with the Department of Computing and Information Systems,
Trent University, Peterborough, ON, Canada

Emil Sekerinski is with the Department of Computing and Software,
McMaster University, Hamilton, ON, Canada

initiate a response to rapidly spreading false information about
vaccines or to urgently address new pandemic super-spreading
events [12]–[14]. This is the problem of maintaining the core
number in dynamic graphs. In [15], Zhang et al. summarize
the research on core maintenance and applications.

Many sequential algorithms are devised for core mainte-
nance in dynamic graphs [16]–[21]. The main idea for core
maintenance is that first, a set of vertices whose core numbers
need to be updated (denoted as V ∗) is identified by traversing
a possibly larger scope of vertices (denoted as V +) such that
V ∗ ⊆ V +. There are two main algorithms for maintaining
core numbers over dynamic graphs, TRAVERSAL [18] and
ORDER [17]. Given an inserted edge, the TRAVERSAL algo-
rithm searches V ∗ by performing a depth-first graph traversal
within a subcore, a connected region of vertices with the same
core numbers. For the ORDER algorithm, the size of V + is
significantly reduced, so the ratio |V +|/|V ∗| is typically much
smaller and has less variation compared to the TRAVERSAL
algorithm. Thus, the computational time is significantly im-
proved. The experiments in [17] show that for edge insertion,
ORDER significantly outperforms TRAVERSAL over all tested
graphs with up to 2,083 times speedups; for the edge removal,
ORDER outperforms TRAVERSAL over most of the tested
graphs with up to 11 times speedups. Furthermore, based
on the ORDER algorithm, a SIMPLIFIED-ORDER algorithm
is proposed in [16], which is easier to implement and to argue
for correctness; also, SIMPLIFIED-ORDER has improved time
complexities by adopting the Order Maintenance (OM) data
structure to maintain the order of all vertices.

All the above methods are sequential for maintaining core
over dynamic graphs, meaning they handle only one edge
insertion or removal at a time. The problem is that when
a burst of many inserted or removed edges comes in, these
edges may not be handled on time to keep up with the data
stream [14]. The prevalence of multi-core machines suggests
parallelizing the core maintenance algorithms. Many multi-
core parallel batch algorithms for core maintenance have
been proposed in [22]–[24]. These algorithms are based on
similar ideas: 1) they use an available structure, e.g. Join
Edge Set [22], to preprocess a batch of inserted or removed
edges, avoiding repeated computations, and 2) each worker
performs the TRAVERSAL algorithm. However, there are three
drawbacks to these approaches. First, they are based on the
sequential TRAVERSAL algorithm [20], [21], which is proved
to be less efficient than the ORDER algorithm [16], [22].
Second, parallelism can be exploited only for affected vertices
with different core numbers; the algorithm is reduced to
running sequentially when all affected vertices have the same
core numbers. Third, the time complexities are not analyzed by

JOURNAL OF IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS CLASS FILES, VOL. 18, NO. 9, SEPTEMBER 2020 2

TABLE I
THE WORK AND DEPTH COMPLEXITIES OF OUR PARALLEL CORE MAINTENANCE

Worst-case (O) Best-case (O)
Parallel W D W D
Insert m′|E+| log |E+| m′|E+| log |E+| m′|E+| log |E+| |E+| log |E+|+m′|V ∗|
Remove m′|E∗| m′|E∗| m′|E∗| |E∗|+m′|V ∗|

the work-depth model [25], where the workW is its sequential
running time, and the depth D is its running time on an infinite
number of processors.

To overcome the above drawbacks, inspired by the
SIMPLIFIED-ORDER algorithm [16], we propose a new par-
allel batch algorithm, called PARALLEL-ORDER, to maintain
core numbers after batches of edges insertions or removals in
dynamic graphs. Based on maintaining the k-order with the
parallel OM data structure, we can parallelize the ORDER algo-
rithm. 1) For edge insertion, the idea is straightforward: each
worker handles one inserted edge at a time and propagates
the affected vertices in k-order, such that only the traversed
vertices in V + are locked. When traversing v ∈ V +, not all
neighbors u ∈ v.adj need to be locked if u /∈ V +. When
another worker tries to access these vertices, it must wait until
they are unlocked. Since all affected vertices are locked in k
order, this method does not have blocking cycles that lead to
a deadlock. 2) Edge removal is more challenging than edge
insertion. The idea is that each worker handles one removed
edge at a time and propagates the affected vertices, such that
only the traversed vertices in V ∗ are locked. When traversing
v ∈ V ∗, not all neighbors u ∈ v.adj need to be locked if
u /∈ V ∗. The problem is that this method may cause blocking
cycles that lead to a deadlock as all affected vertices are
traversed without any order. We propose a novel mechanism
to avoid such deadlocks. The main contributions of this work
are summarized below:

• We investigate the drawbacks of the state-of-the-art par-
allel core maintenance algorithms [22]–[24].

• Based on the parallel OM data structure [26] and the
SIMPLIFIED-ORDER core maintenance algorithm [16],
we propose a PARALLEL-ORDER edge insertion algo-
rithm for core maintenance. Only the traversed vertices
in V + are locked for synchronization. We also implement
the priority queue Q combined with the parallel OM data
structure to obtain a vertex in Q with a minimal k-order.

• We propose a PARALLEL-ORDER edge removal algo-
rithm for core maintenance and a novel mechanism to
avoid blocking cycles that lead to a deadlock. Only the
traversed vertices in V ∗ are locked for synchronization.

• We prove the correctness of our PARALLEL-ORDER
insertion and removal core maintenance algorithms; we
also prove the time complexities with the work-depth
model.

• We conduct extensive experiments on a 64-core machine
over various graphs to evaluate the PARALLEL-ORDER
algorithms for edge insertion and removal.

We analyze our parallel algorithms in the standard work-
depth model [27]. The work, denoted asW , is the total number
of operations that the algorithm uses. The depth, denoted as D,

is the longest chain of sequential operations. Table I shows
the work and depth of the PARALLEL-ORDER algorithm for
inserting and removing m′ edges in parallel. For both edge
insertion and removal, one issue is that the depth D is equal
to the work W in the worst case; that is, all workers execute
in one blocking chain such that only one worker is active.
However, with a high probability, such a worst-case does not
happen as the number of locked vertices is always small for
each insertion and removal. For our method, all vertices in
V + or V ∗ are locked together for each insertion or removal.
In Fig. 1, on 16 tested graphs (in Table II of our experiment
section), we summarize the number of different sizes of V +

when randomly inserting and removing 100,000 edges. We
observe that almost all V + and V ∗ have really small sizes
for insertion or removal, respectively. Specifically, more than
97% of edge insertions and removals for all tested graphs have
|V +| and |V ∗| between 0 and 10. That means, with a high
probability that less than 11 vertices are locked when inserting
or removing one edge, which leads to a low probability that
all workers execute in one long blocking chain.

0 200 400 600 800 1000 1200
Size of V +

100

101

102

103

104

105

Nu
m

be
r o

f V
+

Our Parallel Edge Insert

0 200 400 600 800 1000 1200
Size of V *

100

101

102

103

104

105

Nu
m

be
r o

f V
*

Our Parallel Edge Remove

Fig. 1. The number of different sizes of V + for inserting and removing
100,000 edges by using our parallel core maintenance algorithms, respectively.
The x-axis is the size of V + and the y-axis is the number of such size of
V ∗.

The rest of this paper is organized as follows. The related
work is discussed in Section II. The preliminaries are given
in Section III. Our new parallelized Order-Based core main-
tenance algorithms are proposed in Section IV. We discuss
the implementation of priority queues and buffer queues in
Section V. We conduct extensive performance studies and
show the results in Section VI, and conclude this work in
Section VII.

II. RELATED WORK

A. Core Decomposition

The BZ algorithm [1] has linear running time O(m) by
using bucket structures, where m is the number of edges.
In [8], an external memory algorithm is proposed, so-called
EMcore, which runs in a top-down manner such that the
whole graph does not have to be loaded into memory. In [11],

JOURNAL OF IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS CLASS FILES, VOL. 18, NO. 9, SEPTEMBER 2020 3

Wen et al. provide a semi-external algorithm, which requires
O(n) memory to maintain the information of vertices. In [9],
Khaouid et al. investigate the core decomposition in a single
PC over large graphs by using GraphChi and WebGraph
models. In [10], Montresoret et al. consider the core de-
composition in a distributed system. In addition, the parallel
computation of core decomposition in multi-core processors
is first investigated in [28], where the ParK algorithm was
proposed. Based on the main idea of ParK, a more scalable
PKC algorithm has been reported in [29].

B. Core Maintenance

In [20], [21], an algorithm similar to the TRAVERSAL algo-
rithm is given, but with a quadratic time complexity. In [11],
a semi-external algorithm for core maintenance is proposed
to reduce the I/O cost, but this method is not optimized for
CPU time. In [30], Sun et al. design algorithms to maintain ap-
proximate cores in dynamic hypergraphs in which a hyperedge
may contain one or more participating vertices compared with
exactly two in graphs. In [14], Gabert et al. propose parallel
core maintenance algorithms for maintaining cores over hyper-
graphs. There exists some research based on core maintenance.
In [31], the authors study computing all k-cores in the graph
snapshot over the time window. In [32], the authors explore the
hierarchy core maintenance. In [33], distributed approaches to
core maintenance are explored. In [34], a parallel approximate
k-core decomposition and maintenance approach is proposed,
where bounded approximate core numbers for vertices can be
maintained with high probability.

C. Weighted Graphs

All the above work focuses on unweighted graphs, but graphs
are weighted in many applications. For an edge-weighted
graph, the degree of a vertex is the sum of the weights of all its
incident edges. However, weighted graphs have a large search
range for maintaining the core numbers after a change by using
the traditional core maintenance algorithms directly, as the
degree of a related vertex may change widely. In [35], Zhou et
al. extend the coreness to weighted graphs and devise weighted
core decomposition algorithms; also, they devise weighted
core maintenance based on the k-order [16], [17]. In [36],
Liu et al. improve the core decomposition and incremental
maintenance algorithm to suit edge-weighted graphs.

III. PRELIMINARIES

Let G = (V,E) be an undirected and unweighted graph; V (G)
denotes the set of vertices, and E(G) represents the set of
edges in G. When the context is clear, we will use V and E
instead of V (G) and E(G), respectively. As G is an undirected
graph, an edge (u, v) ∈ E(G) is equivalent to (v, u) ∈ E(G).
We denote the number of vertices and edges of G by n and
m, respectively. We define the set of neighbors of a vertex
u ∈ V as u.adj , formally u.adj = {v ∈ V : (u, v) ∈ E}. We
denote the degree of u in G as u.deg = |u.adj |.

Definition III.1 (k-Core). Given an undirected graph G =
(V,E) and an integer k, a subgraph Gk of G is called a k-core

Algorithm 1: BZ algorithm for core decomposition

1 for u ∈ V do u.d← |u.adj |; u.core = ∅
2 Q← a min-priority queue by u.d for all u ∈ V
3 while Q ̸= ∅ do
4 u← Q.dequeue()
5 u.core ← u.d; remove u from G
6 for v ∈ u.adj do
7 if u.d < v.d then v.d← v.d− 1
8 update Q

if it satisfies the following conditions: (1) for ∀u ∈ V (Gk),
u.deg ≥ k; (2) Gk is maximal. Moreover, Gk+1 ⊆ Gk, for all
k ≥ 0, and G0 is just G.

Definition III.2 (Core Number). Given an undirected graph
G = (V,E), the core number of a vertex u ∈ G(V), denoted
as u.core, is defined as u.core = max{k : u ∈ V (Gk)}. That
means u.core is the largest k such that there exists a k-core
containing u.

Definition III.3 (k-Subcore). Given an undirected graph G =
(V,E), a maximal set of vertices S ⊆ V is called a k-subcore
if (1) ∀u ∈ S, u.core = k; (2) the induced subgraph G(S)
is connected. The subcore that contain vertex u is denoted as
sc(u).

A. Core Decomposition

Given a graph G, the problem of computing the core number
for each u ∈ V (G) is called core decomposition. In [1],
Batagelj et al. propose a linear time O(m+ n) algorithm, the
so-called BZ algorithm, shown in Algorithm 1. The general
idea is peeling: to compute the k-core Gk of G, repeatedly
vertices (and their adjacent edges) whose degrees are less
than k are removed. When there are no more vertices to be
removed, the resulting graphs are the k-core of G. The core
number of u is determined in line 5. The min-priority queue Q
can be efficiently implemented by bucket sorting [1], leading
to a linear running time of O(m+ n).

B. Core Maintenance

The problem of maintaining the core numbers for dynamic
graphs G when edges are inserted into and removed from G
continuously is called core maintenance. The insertion and
removal of vertices can be simulated as a sequence of edge
insertions and removals.

Definition III.4 (Candidate Set V ∗ and Searching Set V +).
Given a graph G = (V,E), when an edge is inserted or
removed, a candidate set of vertices, denoted V ∗, needs to
be identified, and the core numbers of vertices in V ∗ must be
updated. To identify V ∗, a minimal set of vertices, denoted
V +, is traversed by accessing their adjacent edges.

Clearly, we have V ∗ ⊆ V +. An efficient core maintenance
algorithm should have a small ratio of |V +|/|V ∗|. It is shown
that the ORDER [22] insertion algorithm has a significantly

JOURNAL OF IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS CLASS FILES, VOL. 18, NO. 9, SEPTEMBER 2020 4

lower ratio compared to the TRAVERSAL [20] insertion algo-
rithm. This is why we try to parallelize the ORDER algorithm
in this paper.

In [20], [21], it is proved that after inserting or removing one
edge, the core number of vertices in V ∗ increases or decreases
by at most one, respectively; V ∗ is only located in the k-
subcore, where k is the lower core number of two vertices
that the inserted or removed edge connect.

C. The Order-Based Core Maintenance

The state-of-the-art core maintenance solution is the ORDER
algorithm [16], [17]. For edge insertion, it is based on three
notions: k-order, candidate degree, and remaining degree. For
edge removal, it uses the notion of the max-core degree [20].

1) Edge Insertion:

Definition III.5 (k-Order ⪯). [17] Given a graph G, the
k-order ⪯ is defined for any pairs of vertices u and v over
the graph G as follows: (1) when u.core < v.core, we have
u ⪯ v; (2) when u.core = v.core, we have u ⪯ v if u’s core
number is determined before v’s by the peeling steps of the
BZ algorithm.

A k-order ⪯ is an instance of all the possible vertex
sequences produced by the BZ algorithm. When generating
the k-order, there may be multiple vertices v ∈ Q that have
the same value of u.d and can be dequeued from Q at the
same time together (Algorithm 1, line 4). When dealing with
these vertices with the same value of d, different sequences
generate different instances of correct k-order for all vertices.
There are three heuristic strategies, “small degree first”, “large
degree first”, and “random”. The experiments in [17] show that
the “small degree first” consistently has the best performance
over all tested real graphs, and thus we choose this strategy
for implementation and experiments.

For the k-order, transitivity holds, that is, u ⪯ v if
u ⪯ w ∧ w ⪯ v. For each edge insertion and removal, the
k-order will be maintained. Here, Ok denotes the sequence
of vertices in k-order whose core numbers are k. A sequence
O = O0O1O2 · · · over V (G) can be obtained, where Oi ⪯ Oj

if i < j. It is clear that ⪯ is defined over the sequence of
O = O0O1O2 · · · . In other words, for all vertices in the graph,
the sequence O indicates the k-order ⪯.

Given an undirected graph G = (V,E) with O in k-order,
each edge (u, v) ∈ E(G) can be assigned a direction such
that u ⪯ v. By doing this, a direct acyclic graph (DAG) G⃗ =
(V, E⃗) can be constructed where each edge u 7→ v ∈ E⃗(G⃗)
satisfies u ⪯ v. Of course, the k-order of G is a topological
order of G⃗. Here, the set of successors of v is defined as
u(G⃗).post = {v | u 7→ v ∈ E⃗(G⃗)}; the set of predecessors of
v is defined as u(G⃗).pre = {v | v 7→ u ∈ E⃗(G⃗)}. When the
context is clear, we use u.post and u.pre instead of u(G⃗).post
and u(G⃗).pre, respectively [16].

Definition III.6 (candidate in-degree). [16], [17] Given a
constructed DAG G⃗(V, E⃗), the candidate in-degree v.d∗

in is
the total number of its predecessors located in V ∗, denoted as
d∗
in(v) = |{w ∈ v.pre : w ∈ V ∗}|.

Algorithm 2: InsertEdge(G⃗,O, u 7→ v)

1 V ∗, V +,K ← ∅, ∅, u.core
2 insert u 7→ v into G⃗ with u.d+

out ← u.d+
out + 1

3 if u.d+
out ≤ K then return

4 Q← a min-priority queue by O; Q.enqueue(u)
5 while Q ̸= ∅ do
6 w ← Q.dequeue()
7 if w.d∗

in + w.d+
out > K then

Forward(w, V ∗, V +)
8 else if w.d∗

in > 0 then Backward(w, V ∗, V +)
9 for w ∈ V ∗ do w.core ← K + 1; w.d∗

in ← 0
10 To maintain the k-order, remove each w ∈ V ∗ from

OK and insert w at the beginning of OK+1 in k-order.

Definition III.7 (remaining out-degree). [16], [17] Given a
constructed DAG G⃗(V, E⃗), the remaining out-degree v.d+

out is
the total number of its successors without the ones that are
confirmed not in V ∗, denoted as v.d+

out = |{w ∈ v.post : w /∈
V+ \V ∗}|.

Theorem III.1. [16] Given a constructed DAG G⃗ = (V, E⃗)
by inserting an edge u 7→ v with K = u.core ≤ v.core, the
candidate set V ∗ includes all possible vertices that satisfy: 1)
their core numbers equal to K, and 2) their total numbers of
candidate in-degree and remaining out-degree are greater than
K, formally ∀w ∈ V : w ∈ V ∗ ≡ (w.core = K ∧ w.d∗

in +
w.d+

out > K)

For all vertices v in G⃗, we must ensure that v.core ≤ v.d+
out .

When inserting an edge v 7→ u, the out-degree v.d+
out increases

by 1. If v.core > v.d+
out , edge insertion maintenance is

required after adding v to V ∗. Theorem III.1 shows what
qualified vertices should be added to V ∗. In this case, V ∗

and V + are maintained, which are used to calculate v.d∗
in and

v.d+
out when traversing v.

Algorithm 2 is the ORDER insertion algorithm [16]. As the
precondition, we assume that v.core, v.d+

out , and v.d∗
in for

all vertices v are correctly initialized. After inserting an edge
u 7→ v, we add u to V ∗ when u.d+

out > K = u.core (line 2).
The key idea is to repeatedly add vertices w to V ∗ such that
w.d∗

in+w.d+
out > K. Importantly, the priority queue Q is used

to traverse all affected vertices in k-order (lines 4 - 6). When
traversing the affected vertices w in O, the value w.d∗

in +
w.d+

out is the upper bound as we traverse G⃗ in topological
order. There are two cases. First, if w.d∗

in + w.d+
out > K,

we execute the Forward procedure to add w into V ∗; also,
for each w′ ∈ w.post with w′.core = K, we add w′.d∗

in by
one and then add to Q for propagation (line 7). Second, if
w.d∗

in + w.d+
out ≤ K ∧ w.d∗

in > 0, we identify that w must
not be added to V ∗; procedure Backward propagates w to
remove potential vertices v from V ∗ since v.d+

out or v.d∗
in is

decreased (line 8). All other vertices w in O not in the above
two cases are skipped. Finally, V ∗ includes all vertices whose
core numbers should be added by 1 (line 9). Of course, the
k-order is maintained for inserting other edges (line 10).

Example III.1. Fig. 2 shows an example of maintaining the

JOURNAL OF IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS CLASS FILES, VOL. 18, NO. 9, SEPTEMBER 2020 5

3

3

1

(b)

2 10

1

3

2

(c)

2 10

2

2

1

(a)

1 10

Fig. 2. An example graph maintains the core numbers after inserting three edges, e1, e2, and e3 . The letters inside the cycles are vertices’ IDs and the Ok

is the k-order of vertices with core numbers k. The beside numbers are corresponding remaining out-degrees d+
out . The direction for each edge indicates the

k-order of two vertices, which is constructed as a DAG. (a) an initial example graph. (b) insert 3 edges. (c) the core numbers and k-orders update.

core numbers of vertices after inserting three edges, e1 to e3,
successively. Figure 2(a) shows the example graph constructed
as a DAG where the direction of edges indicates the k-order.
After initialization, v has a core number of 1 with k-order O1

and u1 to u5 have a core number of 2 with k-order O2.
Figure 2(b) shows three edges, e1, e2 and e3, being inserted.

(1) For e1, we increase v.d+
out to 2 so that v.d+

out > v.core
and V ∗ = {v}. Then, we stop since all v.post have core
numbers larger than v.core. Finally, we increase v.core from
1 to 2. (2) For e2, we increase v.d+

out to 3 so that v.d+
out >

v.core and V ∗ = {u2}. Then, we traverse u3 in k-order and
find that u3.d

∗
in + u3.d

+
out = 1 + 1 = 2 ≤ K = 2, so that

u3 cannot add to V ∗ which cause u2 removed from V ∗ (by
Backward). In this case, u2 is moved after u1 in k-order as
O2 = u1, u3, u2, u4, u5. (3) For e3, we increase u1.d

+
out to 3

so that u1.d
+
out > K = 2 and V ∗ = {u2}. Then, we traverse

u3, u2, u4 and u5 in k-order, all of which can be added into
V ∗ since their d∗

in + d+
out > K = 2. Finally, we increase the

core numbers of u2 to u5 from 2 to 3.
Figure 2(c) shows the result after inserting edges. All

vertices have core numbers increased by 1. Orders O2 and
O3 are updated accordingly. All vertices’ d+

out are updated
accordingly.

2) Edge Removal:

Definition III.8 (max-core degree mcd). [16]–[18] Given a
graph G = (V,E), for each vertex v ∈ V , the max-core degree
is the number of v’s neighbors w such that w.core ≥ v.core,
defined as v.mcd = |{w ∈ v.adj : w.core ≥ v.core}|.

All vertices v in G maintain v.mcd ≥ v.core. When remov-
ing an edge (u, v), e.g. v.core < u.core, we have v.mcd off
by 1 and u.mcd unchanged. In this case, if v.mcd < v.core,
Edge removal maintenance is required.

The ORDER removal algorithm is presented in Algorithm
3. After an edge is removed, the affected vertices, u and v,
have to be put into V ∗ if their mcd less than core (lines 2
to 4), which may repeatedly cause the other vertices’ mcd to
decrease and then be added to V ∗ (lines 5 to 9). The queue R
is used to propagate the vertices added to V ∗ whose mcd are
less than their core numbers (lines 5 and 6). The k-order is
maintained for inserting an edge next time (line 11). Also, all

Algorithm 3: RemoveEdge(G,O, (u, v))

1 R,K, V ∗ ← an empty queue, Min(u.core, v.core), ∅
2 remove (u, v) from G⃗ with updating u.mcd and v.mcd
3 if u.mcd < K then V ∗ ← V ∗ ∪ {u};R.enqueue(u)
4 if v.mcd < K then V ∗ ← V ∗ ∪ {v};R.enqueue(v)
5 while R ̸= ∅ do
6 w ← R.dequeue()
7 for w′ ∈ w.adj with w′.core = K ∧ w /∈ V ∗ do
8 w′.mcd← w′.mcd− 1
9 if w′.mcd < K then

V ∗ ← V ∗ ∪ {w′};R.enqueue(w′)
10 for w ∈ V ∗ do w.core ← w.core − 1
11 Remove all w ∈ V ∗ from OK and append to OK−1 in

k-order
12 update mcd for all related vertices accordingly

vertices’ mcd have to be updated for removing an edge next
time (line 12).

Example III.2. Fig. 3 shows an example of maintaining the
core numbers of vertices after successively removing three
edges, e1 to e3. Figure 3(a) shows that v has a core number
of 2 with k-order O2 and all u1 to u5 have core numbers of
3 with k-order O3. For all vertices, the core numbers are less
than or equal to mcd .

Fig. 3(b) shows the three edges, e1 to e3, removed. (1)
For e1, v.mcd is off by 1 so we have v.mcd < K = 2 and
V ∗ = {v}, but u2.mcd is not affected. There is no propagation
since all v.adj have core numbers greater than K = 2. Finally,
we decrease v.core from 2 to 1. (2) For e2, both u2.mcd and
u3.mcd are off by 1 and less than K = 3, so that V ∗ =
{u2, u3}. Then, both u2 and u3 are added to R for propagation,
and u1, u4, and u5 are consecutively added to V ∗ with V ∗ =
{u2, u3, u1, u4, u5}. Finally, we decrease the core number of
u1 to u5 from 3 to 2; also, the mcd of both u2 and u3 are
updated as 2, and the mcd of u1, u4 and u5 are updated as
3. (3) For e3, both u2.mcd and u3.mcd are off by 1. But
their mcd are still not less than K = 2, so that V ∗ = ∅. The
propagation stops. Finally, the mcd of both u1 and u4 are
updated to 2.

JOURNAL OF IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS CLASS FILES, VOL. 18, NO. 9, SEPTEMBER 2020 6

3

2

2

2

(b)

1 24

3

3

(a)

2 4 3

2

2

2

(c)

1 24

Fig. 3. An example graph maintains the core numbers after removing 3 edges, e1, e2, and e3. The letters inside the cycles are vertices’ IDs and the Ok is
the k-order of vertices with core numbers k. The beside numbers are corresponding mcd . (a) an initial example graph. (b) remove three edges. (c) the core
numbers and Ok update.

Figure 3(c) shows the result after removing the edges. All
vertices have core numbers that decreased by 1. Orders O1

and O2 are updated accordingly. Also, all vertices’ mcd are
updated accordingly.

D. Order Maintenance Data Structure

In the SIMPLIFIED-ORDER core maintenance algorithm [16],
the OM data structure [37], [38] is used to maintain the k-
order. In this work, we adopt a concurrent version of the OM
data structure [26] to maintain the k-order for the parallel core
maintenance. The OM data structure has the following three
operations:
– Order(O, x, y): determine if x precedes y in the ordered

list O;
– Insert(O, x, y): insert a new item y after x in the ordered

list O;
– Delete(O, x): delete x from the total order in the ordered

list O.
Assume there are maximal N items in the total order O.

All items are assigned labels to indicate the order. For the
Insert operation, a two-level data structure [39] is used.
Each item is stored in the bottom-list, which contains a group
of consecutive elements; each group is stored in the top-
list, which can contain Ω(logN) items. Both the top-list and
bottom-list are organized as double-linked lists. We use x.pre
and x.next to denote the predecessor and successor of x,
respectively. Each item x has a top-label Lt(x), which equals
to x’s group label denoted as Lt(x) = L(x.group), and
bottom-label Lb(x), which is x’s label. With enough label
space after x, y can successfully obtain a new label in O(1)
time. Otherwise, the x’s group g is full, which triggers a
relabel process. Specifically, the relabel operations have two
steps:

– Rebalance: if there is no label space after x’s group g,
we have to rebalance the top-labels of groups. From g,
we continuously traverse the successors g′ until L(g′)−
L(g) > j2, where j is the number of traversed groups.
Then, new group labels can be assigned with the gap j,
in which newly created groups can be inserted. Finally,
a new group can be inserted after g.

– Split: when the group g of x is full, g is split out one
new group, which contains at most logN

2 items and new
bottom-labels Lb are uniformly assigned for items in new
groups. Newly created groups are inserted after g, where
we can create the label space by the above rebalance
operation.

Such rebalance and split operations will continue until less
than logN

2 items remain in g. In addition, new bottom labels
Lb are uniformly assigned for items in g.

Label Lt is in the range [0, N2] and label Lb in the range
[0, N]. Typically, each label can be stored as an O(logN) bits
integer. Assume it takes O(1) time to compare two integers.
For the sequential version [37]–[39], each Insert operation
only cost amortized O(1) time; also, the Order and Delete
operations requires O(1) time. In the parallel version [26],
Insert and Delete are synchronized by locks. More im-
portantly, the parallel Order is lock-free, which is meaningful
since a large portion of OM operations for core maintenance
in graphs is to compare the order of two vertices on one edge.

In this work, we adopt the parallel OM data structure [26]
to maintain the k-order in parallel for three reasons. First, our
method has a larger portion of Order operations compared
to Insert and Delete operations. The lock-free Order
operations are efficient even if multiple workers insert and
remove vertices concurrently. Second, all three operations cost
O(1) work, which does not worsen the work complexity of our
core maintenance. Third, the labels of vertices, which indicate
their order, can be used to implement the priority queue Q.
Here, Q is the key data structure for our core maintenance in
Algorithm 7.

E. Atomic Primitive and Lock

The compare-and-swap atomic primitive CAS(x, a, b) takes a
variable (location) x, an old value a and a new value b. It
checks the value of x, and if it equals a, it updates the variable
to b and returns true; otherwise, it returns false to indicate that
updating failed.

We use locks for synchronization in our parallel algorithms.
In our experiments, we implemented two kinds of locks.
One is the locks of OpenMP [40], omp_set_lock and
omp_unset_lock, which is easy to use, but the overhead

JOURNAL OF IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS CLASS FILES, VOL. 18, NO. 9, SEPTEMBER 2020 7

is high. In this paper, we use the compare-and-swap primitive
(CAS) [41]. We assume that the locks are somewhat fair.

Given variable x as a lock, the CAS will repeatedly check
x, and set x from false to true if x is false. One worker
will busy-wait on lock x without suspension until another
worker releases the lock.

Additionally, we use the conditional lock as in Algorithm 4.
The condition c is checked before and after the CAS primitive
(lines 1 and 3). It is possible that other workers may update
the condition c concurrently. If c is changed to false after
locking x, variable x will be unlocked and then return false
immediately (line 4). The conditional Lock can atomically
lock x by satisfying condition c, thus avoiding blocking on a
locked x that does not satisfy c.

Algorithm 4: Lock(x) with c

1 while c do
2 if CAS(x, false, true) then
3 if c then return true
4 else x← false; return false
5 return false

IV. PARALLEL CORE MAINTENANCE

The existing parallel core maintenance algorithms are based
on the sequential TRAVERSAL algorithm, which is proved to
be less efficient than the sequential ORDER algorithm. In this
section, based on the ORDER algorithm, we propose a new
parallel core maintenance algorithm, PARALLEL-ORDER, for
both edge insertion and removal.

The steps for parallel inserting edges are shown in Algo-
rithm 5. Given an undirected graph G, the core number and k-
order can be initialized by the BZ algorithm [1] in linear time.
A batch of edges ∆E are to be inserted in G. We split these
edges ∆E into P parts, ∆E1 . . .∆EP , where P is the total
number of workers (line 1). Each worker p handles multiple
edges in ∆Ep in parallel with other workers (line 2). Each
time, a worker p deals with a single edge in InsertEdgep

(line 4). The key issue is how to implement InsertEdgep

executed by worker p in parallel with other workers.

Algorithm 5: Parallel-InsertEdges(G,O,∆E)

1 partition ∆E into ∆E1, . . . ,∆EP
2 DoInsert1(∆E1) ∥ · · · ∥ DoInsertP(∆EP)

3 procedure DoInsertp(∆Ep)
4 for (u, v) ∈ ∆Ep do

InsertEdgep(G,O, (u, v))

Removing edges in parallel is analogous to Algorithm 5;
the key issue is RemoveEdgep. Note that the insertion and
removal cannot run in parallel, which greatly simplifies the
synchronization of the algorithms.

One benefit of our method is that, unlike the existing parallel
core maintenance methods [22]–[24], a prepossessing of ∆Ep

is not required so that edges can be inserted and removed
on-the-fly.

A. Parallel Edge Insertion

1) Algorithm: The detailed steps of InsertEdgep are
shown in Algorithm 7, which is analogous to Algorithm 2.
We introduce several new data structures. First, the priority
queue Qp, the queue Rp, the candidate set V ∗

p , and the
searching set V +

p are all privately used by the worker p; they
cannot be accessed by other workers and synchronization is
not necessary (lines 3, 7). Second, for each vertex u ∈ V ,
we introduce a status u.s, initialized to 0 and atomically
incremented by 1 before and after the k-order operation (lines
16 and 30). In other words, when u.s is an odd number, the k-
order of u is being maintained. By using such a status of each
vertex, we obtain v ∈ u.post (u ⪯ v) or v ∈ u.pre (v ⪯ u)
by the parallel Order(u, v) operation.

As shown in Algorithm 6, when comparing the order of u
and v, we ensure that u and v are not updating their k-order.
We repeatedly acquire u.s and v.s as s and s′ until both s and
s′ are even numbers (line 3). After comparing the order of u
and v (line 4), we check if u.s and v.s have increased (line
5). In that case, we redo the whole process (line 2). Finally,
we return the result in line 6.

Algorithm 6: Parallel-Order(O, u, v)
1 s← ∅; s′ ← ∅; r ← ∅
2 do
3 do s← u.s; s′ ← v.s while

s mod 2 = 1 ∨ s′ mod 2 = 1
4 r ← u ⪯ v
5 while s ̸= u.s ∨ s′ ̸= v.s
6 return r

Given an edge u 7→ v to be inserted, where u ⪯ v, we
lock both u and v together at the same time when both are
not locked (line 1). We redo the lock of u and v if they
were updated by other workers as v ⪯ u (line 2). After
locking, K is initialized as the smaller core number of u and
v. After inserting the edge u 7→ v in graph G (line 4), v
can be unlocked (line 5). If u.d+

out ≤ K, we unlock u and
terminate (line 6); otherwise, we set w to u for propagation
(line 7). In the do-while-loop (lines 8 - 13), initially, w equals
u, which is already locked in line 1 (line 7). We calculate
w.d∗

in by counting the number of w.pre located in V ∗
p while

w is locked since w may be accessed by other workers (line
9). If w.d∗

in + w.d+
out > K, vertex w requires the Forward

procedurep (line 10). If w.d∗
in + w.d+

out ≤ K ∧ w.d∗
in > 0,

vertex w requires the Backward procedure (line 11). If
w.d∗

in+w.d+
out ≤ K∧w.d∗

in = 0, we can skip w and unlock w
since w can not be in V + (line 11). Repeatedly, we dequeue
w from Qp (line 12) with the following steps: 1) we lock
the head w of Qp; 2) by checking w.s, we know whether
w has been locked and updated by other workers or not; 3)
if that is the case, we remove w from Qp if w.core > K,
unlock w and update Qp. In a word, we dequeue w from Qp,
where w has the minimal k-order in Qp and w.core = K (line
12). After locking w, its k-order cannot be changed by other
workers. The do-while-loop terminates when no vertices can
be dequeued from Qp (line 13). All vertices w ∈ V ∗

p have core
numbers incremented by 1 and their w.d∗

in is reset to 0 (line

JOURNAL OF IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS CLASS FILES, VOL. 18, NO. 9, SEPTEMBER 2020 8

15); also, all vertices w are removed from OK and inserted at
the head of OK+1 to maintain the k-order by using the parallel
OM data structure, where w.s is atomically incremented by 1
before and after this process (line 16). Before termination, all
locked vertices w are unlocked (line 17).

Procedures Forward(u) and Backward(w) are almost
the same as their sequential version since all vertices in
V + are locked. There are only several differences. In the
Forwardp(u) procedure, for each v in u.post whose core
number equals to K, we add v in the priority queue Qp (line
21); but v.d∗

in is not maintained by adding 1 since it will be
calculated in line 9 when using. In procedure Backwardp(w),
all vertices w are removed from OK and appended after pre to
maintain the k-order by using the parallel OM data structure,
where w.s is atomically incremented by 1 before and after this
process (line 30).

Example IV.1. Continuing in Fig. 2, we show an example
of maintaining the core numbers of vertices in parallel after
inserting three edges. Figure 2(b) shows the insertion of three
edges, e1, e2 and e3 in parallel by three workers, p1, p2, and
p3, respectively. (1) For e1, worker p1 will first lock v and
u2 for inserting the edge. But u2 is already locked by p2, so
p1 has to wait for p2 to finish and unlock u2. (2) For e2,
worker p2 will first lock u2 and u3 for inserting the edge,
after which u3 is unlocked. Then, u3, u4 and u5 are added to
its priority queue Q2 for propagation. That is, u3 is locked
and dequeued from Q2 with u3.d

∗
in = 1 (assuming that p2

locks u3 before p3 lock u3). After propagation, we have that
V ∗ is empty. Continuing, u4 and u5 are locked and dequeued
from Q2, which are unlocked and skipped since their d∗

in = 0.
The k-order O2 is updated to u1, u3, u2, u4 and u5. (3) For
e3, worker p3 first locks u1 and u4 for inserting the edge,
after which u4 is unlocked. Then, u3, u4 and u5 are added
to Q3 for propagation. That is, u3 is locked and dequeued
from Q2 (assuming that p3 waits for u3 unlocked by p2) with
u3.d

∗
in = 1, so u3 is added to V ∗ and u2 is added to Q3 for

propagation. Continuing, u3, u2, u4 and u5 are locked and
dequeued from Q3 for propagation, which are all added to V ∗

(assuming that p3 waits for u2 unlocked by p2).
We can see how three vertices, u3, u4 and u5, can be added

to Q2 and Q3 at the same time. That is, when p3 removes u3

from Q2, it is possible that u3 has already been accessed by
p2. In this case, we have to update Q3 before dequeuing if we
find that u3 is accessed by p2; in case, the k-order of u3 in
Q3 is changed by p2.

2) Correctness: We only argue the correctness of Algo-
rithm 2 related concurrency. There are no deadlocks since both
u and v are locked together for an inserted edge u 7→ v (line
1), and the propagated vertices are locked in k-order (line 12).

For each worker p, the accessed vertices are synchronized
by locking. The key issue is to ensure that a vertex w is locked
and then dequeued from Qp in k-order in the do-while-loop
(lines 8 - 12). The invariant is that w has a minimal k-order
in Qp:

∀v ∈ Qp : w /∈ Qp ∧ w ⪯ v

Initially, the invariant is established as w = u and Qp = ∅.

Algorithm 7: InsertEdgep(G⃗,O, u 7→ v)
1 Lock u and v together if both are not locked
2 if v ⪯ u then Unlock u and v; goto line 1
3 V ∗

p , V +
p ,K,← ∅, ∅,min(u.core, v.core)

4 insert u 7→ v into G⃗ with u.d+
out ← u.d+

out + 1
5 Unlock(v)
6 if u.d+

out ≤ K then Unlock(u); return
7 Qp, w ← a min-priority queue by O, u
8 do
9 w.d∗

in ← |{w′ ∈ w.pre : w′ ∈ V ∗
p }| // calculate d∗

in

10 if w.d∗
in + w.d+

out > K then Forwardp(w)
11 else if w.d∗

in > 0 then Backwardp(w) else Unlock(w)
// w is locked and w.core = K when dequeuing

w from Qp

12 w ← Qp.dequeue(K)
13 while w ̸= ∅
14 for w ∈ V ∗

p do
15 w.core ← K + 1; w.d∗

in ← 0
// atomically add w.s

16 ⟨w.s++⟩; Delete(OK , w); Insert(OK+1, head ,w);
⟨w.s++⟩

17 Unlock all locked vertices

18 procedure Forwardp(u)
19 V ∗

p ← V ∗
p ∪ {u}; V

+
p ← V +

p ∪ {u} // u is locked
20 for v ∈ u.post : v.core = K do
21 if v /∈ Qp then Qp.enqueue(v)

22 procedure Backwardp(w)
23 V +

p ← V +
p ∪ {w}; pre ← w // w is locked

24 Rp ← an empty queue; DoPrep(w,Rp)
25 w.d+

out ← w.d+
out + w.d∗

in ; w.d∗
in ← 0

26 while Rp ̸= ∅ do
27 u← Rp.dequeue()
28 V ∗

p ← V ∗
p \ {u}

29 DoPrep(u,Rp); DoPostp(u,Rp)
// atomically add w.s

30 ⟨w.s++⟩; Delete (OK , u); Insert(OK , pre, u);
⟨w.s++⟩

31 pre ← u; u.d+
out ← u.d+

out + u.d∗
in ; u.d∗

in ← 0

32 procedure DoPrep(u,Rp)
33 for v ∈ u.pre : v ∈ V ∗

p do
34 v.d+

out ← v.d+
out − 1

35 if v.d∗
in + v.d+

out ≤ K ∧ v /∈ Rp then Rp.enqueue(v)

36 procedure DoPostp(u,Rp)
37 for v ∈ u.post do
38 if v ∈ V ∗

p ∧ v.d∗
in > 0 then

39 v.d∗
in ← v.d∗

in − 1

40 if v.d∗
in + v.d+

out ≤ K ∧ v /∈ Rp then
Rp.enqueue(v)

When dequeuing w from Q, worker p first locks w, which
has the minimum in the k-order, and then removes w. In this
case, other vertices v ∈ Q can be accessed by other workers
q. For this, there are two cases: 1) other vertices v may have
increased core numbers, which will be removed from Q; 2)
other vertices v may have v.d∗

in + v.d+
out ≤ K and cannot be

added to V ∗
q , which may cause other vertices v′ to be removed

from V ∗
q by procedure Backward; also, all vertices v′ are

moved after v in k-order, they cannot be moved before v. In
other words, all vertices in Qp cannot have a smaller k-order
than w when w is locked.

Worker p traverse u.post in the for-loop (lines 20 - 21, 37
- 40), where u is locked by p; but, not all u.post are locked
by p and may be locked by other workers for updating. So are
u.pre in the for-loop (lines 33 - 35). The invariant is that all

JOURNAL OF IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS CLASS FILES, VOL. 18, NO. 9, SEPTEMBER 2020 9

u.post have k-order greater than u and all u.pre have k-order
less than u:

(v ∈ u.post =⇒ u ⪯ v) ∧ (v′ ∈ u.pre =⇒ v′ ⪯ u)

– v ∈ u.post =⇒ u ⪯ v is preserved as vertices v may
have increased core numbers, but v will never be moved
before u in k-order by other workers q by the Backward
procedure, which has been proved before.

– v′ ∈ u.pre =⇒ v′ ⪯ u is preserved as u is already
locked by worker p so that no other workers can access
u and move v′ after u in k-order by the Backward
procedure.

In other words, the set of u.post and u.pre will not change
until u is unlocked, even when other workers access the
vertices in u.post and u.pre.

3) Time Complexity: When m′ edges are inserted into a
graph, the total work is the same as that of the sequential ver-
sion in Algorithm 2, which is O(m′|E+| log |E+|) where E+

is the largest number of adjacent edges for all vertices in V +

among each inserted edge, defined as E+ =
∑

v∈V +
p
v.deg .

In the best case, k edges can be inserted in parallel by P
workers with a depth O(|E+| log |E+| + m′|V ∗|) as each
worker will not be blocked by other workers; but, all vertices
in |V ∗| are removed from OK and inserted sequentially at
the head of OK+1. Therefore, the best-case running time
is O(m′|E+| log |E+|/P + |E+| log |E+| + m′|V ∗|). In the
worst case, m′ edges have to be inserted one by one,
which is the same as total work, since P workers make
a blocking chain. Therefore, the worst-case running time is
O(m′|E+| log |E+|).

However, in practice, such a worst-case is unlikely to
happen. The reason is that, given a large number of inserted
edges, they have a low probability of connecting with the same
vertex; also, each inserted edge has a small size of V + (e.g.
0 or 1) with a high probability.

4) Space Complexity: For each vertex v ∈ V , it takes O(3)
space to store v.d∗

in , v.d+
out , v.s, and locks, which take O(3n)

space in total. Each worker p maintains their private V ∗
p , V +

p ,
which takes O(2|V +|P) space in total. Similarly, each worker
p maintains Qp and Rp, which take O(|E+|P) space in total
since at most O(2|E+|) vertices can be added to Qp and
Rp for each inserted edge. The OM data structure is used
to maintain the k-order for all vertices in the graph, which
takes O(n) space. Therefore, the total space complexity is
O(n+ |V +|+ |E+|P) = O(n+ |E+|P).

B. Parallel Edge Removal

1) Algorithm: The steps of RemoveEdgep are shown in
Algorithm 8. We introduce several new data structures. First,
the queue Rp is privately used by worker p, which cannot
be accessed by other workers and synchronization is not
necessary (line 2). Second, each worker p adopts a set Ap to
record all the visited vertices w′ ∈ w.adj to avoid repeatedly
revisiting w′ ∈ w.adj again. Third, each vertex v ∈ V has a
status v.t, which has four possible values:

• v.t = 2 means v.core is off by 1 add will be propagated
by adding to R. Note that, the v.core = K−1 and v.t = 2

have to be executed atomically (line 22), as two values
indicate one status.

• v.t = 1 means v is being propagated by the inner for-loop
(lines 11 - 14).

• v.t = 3 means v has to be checked again since some
vertices v.adj have core numbers decreased by other
workers.

• v.t = 0 means v is just initialized or already propagated.
Given a removed edge (u, v), we lock both u and v together

at the same time when both are not locked (line 1). After
locking, K is initialized to the smaller core numbers of u and
v (line 2). We execute procedure CheckMCDp for u or v to
ensure u.mcd and v.mcd are not empty (line 3). We remove
the edge (u, v) safely from the graph G (line 4). For u or v,
if their core number is greater than or equal to K, we execute
procedure DoMCDp (lines 5 and 6), by which u and v may
be added to Rp for propagation. If u or v are not in Rp, we
immediately unlock u or v (line 7). The while-loop (lines 8 -
16) propagates all vertices in Rp. A vertex w is removed from
Rp, and an empty set Ap is initialized (line 9). In the inner
for-loop (lines 11 - 14), the adjacent vertices w′ ∈ w.adj are
conditionally locked with w′.core = K (line 11 and 12). Note
that, to avoid deadlock, when locking w′, we will not busy-
wait once the condition changed to w′core ̸= K, as w′.core
can be decreased from K to K − 1 by other workers (line
12). For each locked w′ ∈ w.adj , we first execute procedure
CheckMCDp in case w′.mcd is empty (line 15) and then
execute the DoMCDp procedure (line 13); also, the visited
w′ are added to Ap to avoid visiting them repeatedly. We
atomically decrease w.t by 1 before and after the inner for-
loop since other workers can access w.t in line 32 (lines 10
and 15). After that, if w.t > 0, we have to propagate w again
as other vertices in w.adj have core numbers decreased from
K + 1 to K by other workers (line 16). The while-loop will
not terminate until Rp becomes empty (line 8). Finally, all
vertices in V ∗ are appended to OK−1 to maintain the k-order
(line 17). All locked vertices are unlocked before termination
(line 18).

In procedure DoMCDp(u), vertex u has been locked by
worker p (line 19). We decrease u.mcd by 1, and u.mcd
cannot be empty (line 20). If it still has u.mcd ≥ u.core, we
finally unlock u and terminate (line 21 and 25). Otherwise,
we first decrease u.core by 1 and set u.t as 2 together, which
has to be an atomic operation (line 22) since v.t indicates v’s
status for other workers. Then, we add u to Rp for propagation
(line 23); also, we set u.mcd to empty since the value is out
of date; it can be calculated later if used (line 24).

In procedure CheckMCD(u), we recalculate u.mcd if it is
empty (line 27). We initially set a temporary mcd to 0 (line
28), and then count the u.mcd (lines 29 - 33). Here, u.mcd is
the number of v ∈ u.adj for two cases: 1) v.core ≥ u.core,
or 2) v.core = u.core − 1 and v.t > 0 (line 29); if that is the
case, we increment the temporary mcd by one (line 30). When
v.core = K−1, it is possible that v.t is being updated by other
workers. If v.t equals 1, we know that v is being propagated. In
this case, we have to set v.s from 1 to 3 by the atomic primitive
CAS, which leads to the propagation of v to be redone in line
16 by other workers (line 32). We skip executing CAS when

JOURNAL OF IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS CLASS FILES, VOL. 18, NO. 9, SEPTEMBER 2020 10

v = w (line 32) to avoid many useless redo processes in line
13. If v.t is reduced to 0, the propagation of v is finished so
that v cannot be counted as u.mcd , and the temporary mcd
is off by 1 (line 33). Finally, we set u.mcd as the temporary
mcd and terminate (line 34). The notable advantage is that we
calculate u.mcd without locking v ∈ u.adj .

Algorithm 8: RemoveEdgep(G,O, (u, v))
1 Lock u and v together if both are not locked
2 K,Rp, V

∗
p ← Min(u.core, v.core), an empty queue, ∅

3 CheckMCDp(u,∅); CheckMCDp(v,∅)
4 remove (u, v) from G
5 if v.core ≥ K then DoMCDp(u)
6 if u.core ≥ K then DoMCDp(v)
7 Unlock u if u /∈ Rp; Unlock v if v /∈ Rp

8 while Rp ̸= ∅ do
9 w,Ap ← Rp.dequeue(), ∅

10 ⟨w.t← w.t− 1⟩ // atomically sub
11 for w′ ∈ w.adj : w′ /∈ Ap ∧ w′.core = K do
12 if Lock(w′) with w′.core = K then
13 CheckMCDp(w

′, w); DoMCDp(w
′)

14 Ap ← Ap ∪ {w′}
15 ⟨w.t← w.t− 1⟩ // atomically sub
16 if w.t > 0 then goto line 10
17 Append all u ∈ V ∗

p at the tail of OK−1 in k-order
18 Unlock all locked vertices

19 procedure DoMCDp(u)
20 u.mcd ← u.mcd − 1
21 if u.mcd < K then
22 ⟨u.core ← K − 1; u.t = 2⟩ // atomic

operation
23 Rp.enqueue(u); u.mcd ← ∅
24 V ∗

p ← V ∗
p ∪ {u}; Delete(O, u)

25 else Unlock(u)

26 procedure CheckMCDp(u,w)
27 if u.mcd ̸= ∅ then return
28 mcd ← 0
29 for

v ∈ u.adj : v.core ≥ K ∨ (v.core = K − 1 ∧ v.t > 0)
do

30 mcd ← mcd + 1
31 if v.core = K − 1 then
32 if v ̸= w ∧ v.t = 1 then CAS(v.t, 1, 3)
33 if v.t = 0 then mcd ← mcd − 1
34 u.mcd ← mcd

Example IV.2. Continuing in Fig. 3, we show an example
of maintaining the core numbers of vertices in parallel when
removing three edges. Figure 3(b) shows the removal of three
edges, e1, e2 and e3 in parallel by three workers, p1, p2 and
p3, respectively. (1) For e1, worker p1 locsk v and u2 together
for removing the edge. But u2 is already locked by p2, so p1
has to wait for p2 to unlock u2. Then, u2 is unlocked without
changing u2.mcd ; the core number of v is off by 1 and added
to R1 for propagation. Since only one vertex, u3 ∈ v.adj , has
a core number greater than v, the propagation of v terminates.
Finally, v is unlocked. (2) For e2, worker p2 first locks u2

and u3 together for removing the edge. Then, both u2.core
and u3.core are off by 1, and u2 and u3 are added to R2

for propagation. For propagating u2, we traverse all vertices
u2.adj ; vertex u4 is locked by worker p3. At the same time,
u4.core is decreased from 2 to 1, and p1 skips to lock u4 since

the condition is not satisfied for the conditional lock. Vertex
u5 is locked by p2 and has u5.mcd off by 1. Similarly, for
propagating u3, we traverse all vertices u3.adj by skipping
u1 and decreasing u5.mcd . Now, we have u5.mcd = 2 <
u5.core = 3, so u5.core is off by 1. Finally, we unlock u2, u3

and u5; all their core numbers are 2 now. (3) For e3, worker
p3 first locks u1 and u4 together for removing the edge. Then
both u1.core and u4.core are off by 1, and u1 and u4 are
added to R3 for propagation. The propagation will stop since
the neighbors of u1 and u4, u3, u2, and u5 are locked by p2
and have decreased core numbers. Finally, we unlock u1 and
u4; all their core numbers are 2 now. We can see that p2 and
p3 execute without blocking each other, and all vertices in V ∗

are locked.
The above example assumes that all vertices’ mcd are

initially generated. If u3.mcd = ∅ before removing e2, we
have to calculate u3.mcd by CheckMCD. At this time, u2

and u5 are counted as u3.mcd since they are not locked by
p3, but u1 is locked by p3 for propagation. The key issue is
whether u1 is counted as u3.mcd or not. There are two cases:
(1) if u1.core = 3, we increment u3.mcd by 1; (2) if u1.core
is decreased to 2 and u1 is propagating, we also increment
u3.mcd by 1; since it is possible that u1 has propagated u3,
we have to force u1 to redo the propagation (setting u1.t from
1 to 3 atomically).

2) Correctness: Algorithm 8 has no deadlocks. First, both
u and v are locked together for a removed edge (u, v) (line 1).
Second, all vertices w ∈ Rp are locked by worker p and
w.core = K − 1; also, worker p will lock all w′ ∈ w.adj
with w.core = K for propagation (lines 11 and 12). There
are four cases:

– if all vertices w′ are not locked, there is no deadlocks;
– if w′ is locked by another worker q but w′.core is not

decreased, there is no deadlock as w′ has no propagation
and worker p will wait until w′ is unlocked by q;

– if w′ is locked by another worker q and w′ always has
w′.core > K, there is no deadlock as w′ is skipped for
traversing.

– importantly, if w′ is locked by another worker q and
w′.core is decreased from K to K − 1, there is no
deadlock as w has propagation stopped on w′ for
w′.core = K−1 and w′ has propagation stopped on w for
w.core = K−1. We use “Lock with” to conditionally
lock w′ with w′.core = K, which ensures to stop busy-
waiting when w′.core decreases from K to K − 1.

The key issue of Algorithm 8 is to correctly maintain the
mcd of all vertices in the graph:

∀v ∈ V : v.mcd = |{w ∈ v.adj : w.core ≥ v.core}|

With this definition of mcd , all vertices v in the graph satisfy
v.mcd ≥ v.core; when removing an edge, v with v.mcd <
v.core are repeatedly added to V ∗

p and have their core numbers
decreased by 1 in order to make v.mcd ≥ v.core. After
deleting one edge, the vertices with decreased core numbers
are added into Rp for propagation. The key issue is to argue the
correctness of the while-loop (lines 8 to 16) for propagation.

JOURNAL OF IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS CLASS FILES, VOL. 18, NO. 9, SEPTEMBER 2020 11

We first define some useful notations. For all vertices v ∈ V ,
we use v.lock , a boolean value, to denote that v is locked and
¬v.lock to denote v is unlocked. We use R to denote the union
of all propagation queues, R = ∪Pp=1Rp. A vertex v ∈ R
indicates v is in one of the Rp for worker p.

The invariant of this while-loop is that all vertices w ∈
V maintain a status w.t indicating if w in R or not; for all
vertices w ∈ Rp, which are locked and added to V ∗, their core
numbers are off by 1 and mcd set as to empty (waiting to be
recalculated). For all vertices w ∈ V , if w.mcd is not empty,
w.mcd is the number of neighbors u that have core numbers
that are 1) greater or equal w.core, or 2) equal to w.core − 1
with u in R waiting to be propagated:

(∀w ∈ V : (w.t > 0 ≡ w ∈ R) ∧ (w.t = 0 ≡ w /∈ R))

∧ (∀w ∈ Rp : w.core = K − 1 ∧ w.mcd = ∅ ∧ w ∈ V ∗
p

∧ w.lock ∧ w.t > 0)

∧ (∀u ∈ V : u.mcd ̸= ∅ =⇒ u.mcd = |{v ∈ u.adj :

v.core ≥ u.core ∨ (v.core = u.core − 1 ∧ v ∈ R)}|)

The invariant initially holds as vertices u and v may be
added to Rp to remove the edge (u, v), and u and v are locked
if added to Rp. We now argue that the while-loop preserves
the invariant:

– ∀w ∈ V : (w.s > 0 ≡ w ∈ R) ∧ (w.s = 0 ≡ w /∈ R)
is preserved as w.t is set to 2 and w is added to R at
the same time by the atomic operation in line 22; also,
and w.s is off to 0 when w is removed from Rp for
proportion.

– ∀w ∈ Rp : w.core = K − 1 ∧ w.mcd = ∅ ∧ w ∈
V ∗
p ∧ w.lock ∧ w.s > 0 is preserved as when adding w

to Rp, w.core is off by 1, w.mcd is set to empty, w.t is
set to 2, and w is added to V ∗; also, w is locked before
being added to R.

– ∀u ∈ V : u.mcd ̸= ∅ =⇒ u.mcd = |{v ∈ u.adj :
v.core ≥ u.core ∨ (v.core = u.core − 1 ∧ v ∈ R)}|
is preserved as when u.mcd are calculated by procedure
CheckMCD, u may have neighbors v ∈ u.adj whose
core numbers are off by 1 and are added to R by other
workers, and the propagation has not yet happened. Note
that, the atomic operation in line 22 ensures that u has
the core number off by 1 and added to R at the same
time.

At the termination of the while-loop, the propagation queue
R is empty so that all vertices w ∈ V have w.mcd correctly
maintained.

We now argue the correctness of the inner for-loop (lines
11 - 14), which is important to parallelism. There are two
more issues with the inner for-loop. One is that w′.core may
be decreased from K+1 to K concurrently by other workers
after visiting w′ (line 11), which may lead to some w′ that
have w′.core decreased to K being skipped. The other is that
v.core and v.s may be updated concurrently by other workers
(line 29).

We first define useful notations as follows. For the inner for-
loop (lines 11 - 14), we denote the set of visited neighbors of
w as w.V , so that w.V = ∅ before the for-loop, w.V ⊆ w.adj

when executing the for-loop, and w.V = w.adj after the for-
loop; also, we denote the set of Ap as w.Ap. Note that we
redo the for-loop if w.t > 0 by resetting the w.V to empty
(line 16). We use V ∗ to denote the union of all V ∗

p , formally
V ∗ = ∪Pp=1V

∗
p . A vertex v ∈ V ∗ indicates v is in one of the

V ∗
p for worker p.
The invariant of the outer while-loop (lines 8 - 16) is

preserved. The additional invariant of the inner for-loop is
that for all vertices u ∈ V , if u.mcd is not empty, u.mcd is
the number of neighbors v that have core numbers that are 1)
greater or equal to u.core, 2) equal to u.core−1 with u ∈ R,
or 3) w.core−1 which has u removed from R for propagation
but v is not yet propagated by u. The status v.t = 1 indicates
that v is doing the propagation and v.t = 0 indicates that v
has finished the propagation:

∀w ∈ V : (w.t = 1 ∨ w.t = 3 ≡ w.V ⊆ w.adj)

∧ (∀u ∈ V : u.mcd ̸= ∅ =⇒ u.mcd = |{v ∈ u.adj :

v.core ≥ u.core ∨ (v.core = u.core − 1 ∧ v ∈ R) ∨
(v.core = u.core − 1 ∧ v /∈ R ∧ v ∈ V ∗ ∧ v /∈ u.V

∧ v /∈ u.Ap)}|)

The invariant initially holds as we have w.t = 1 ∧ w.V =
∅∧w.Ap = ∅. We now argue that the inner for-loop preserves
the invariant:

– ∀w ∈ V : (w.t = 1 ∨ w.t = 3 ≡ w.V ⊆ w.adj) is
preserved as w.t is set to 2 when w is added to Rp and
w.s is off by 1 before and after the for-loop; also, w.t may
be atomically incremented by 2 by CAS when a neighbor
w′ in w.adj is calculating its mcd .

– ∀u ∈ V : u.mcd ̸= ∅ =⇒ u.mcd = |{v ∈ u.adj :
v.core ≥ u.core ∨ (v.core = u.core − 1 ∧ v ∈ R) ∨
(v.core = u.core − 1 ∧ v /∈ R ∧ v ∈ V ∗ ∧ v /∈ u.V ∧
v /∈ Ap) is preserved as when u.mcd is calculated by
procedure CheckMCD, vertex u may have neighbors v ∈
u.adj whose core numbers are off by 1 and added to R
for further propagation; also, it is possible that v is added
to V ∗ and has already been removed from R before the
inner for-loop (line 9) for propagation; there are three
cases:

1) if v not yet traversed u such that v.core = u.core − 1
for propagation as u /∈ v.Ap, u should count v as
u.mcd .

2) if v has already traverse u such that v.core = u.core−1
for propagation as u ∈ v.Ap, u should not count v as
u.mcd .

3) if v has already traverse u such that v.core ̸= u.core−1
for propagation, but after that u.core has been updated
to v.core = u.core − 1, u should count v as u.mcd .

The third case requires repeated traversing of u. We use
v.t = 1 to let u know that v is executing the inner for-
loop (lines 11 - 14) for propagating all vertices in v.adj .
When v.t = 1, vertex u will atomically increment v.t by
1 (line 32), and the propagation of v can run again with
v.Ap avoiding repeated propagation (line 16).

At the termination of the inner for-loop by w.t = 0, we
have w.V = w.adj , so the invariant of the while-loop holds.

JOURNAL OF IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS CLASS FILES, VOL. 18, NO. 9, SEPTEMBER 2020 12

At the termination of the outer while-loop, the propagation
queue R is empty, so that all vertices v ∈ V have v.mcd
correctly maintained as in Equation IV-B2.

3) Time Complexity: When m′ edges are removed from
the graph, the total work is the same as the sequential version
in Algorithm 3, which is O(m′|E∗|) where E∗ is the largest
number of adjacent edges for all vertices in V ∗ among each
removed edge, defined as E∗ =

∑
v∈V ∗

p
v.deg . Analogous to

edge insertion, the best-case running time is O(m′|E∗|/P +
|E∗|+m′|V ∗|); the worst-case running time is O(m′|E∗|). In
practice, such a worst-case is unlikely to happen.

4) Space Complexity: For each vertex v ∈ V , it takes
O(1) space to store v.mcd and locks, so the space in total is
O(n). Each worker p maintains a private set V ∗

p , which takes
O(|V ∗|P) space in total. Each worker p maintains a private
set Rp, which takes O(|E∗|P) space in total since at most
O(|E∗|) vertices can be added to Rp for each removed edge.
The OM data structure is used to maintain the k-order for
all vertices in the graph, which takes O(n) space. Therefore,
the total space complexity is O(n + |V ∗|P + |E∗|P) =
O(n+ |E∗|P).

V. IMPLEMENTATION

The min-priority queue Q is used in core maintenance for
edge insertion to efficiently obtain a vertex v ∈ Q with a
minimum k-order O, where O is maintained by the parallel
OM data structure. Queue Q is implemented with a min-
heap for comparing the labels maintained by the parallel OM
data structure, which supports enqueuing and dequeuing in
O(log |Q|) time.

The key issue is how to efficiently implement the enqueue
and dequeue operations, when the labels of vertices in Ok

are updated by the relable procedure (including rebalance and
split) in the OM data structure. The solution is to re-make
the min-heap of Q each time when the relable procedure
is triggered in Ok. For the implementation, we require the
following structures:

– Each k-order Ok maintains a version number Ok.ver ,
which is atomically incremented by 1 before and after
one triggered relable procedure.

– Each k-order Ok maintains a counter Ok.cnt , which can
atomically record how many workers are executing the
triggered relable procedure.

– The vertex v is added to Q along with the current
top-label (group label), bottom-label, status and version
number, denoted as [Lb(v), L

t(v), v.s, ver]. These two
labels are used for min-priority in Q.

– All vertices v ∈ Q should have the same version number,
which equals to Q’s version number Q.ver .

Definition V.1 (Version Invariant). All vertices v in Q main-
tain the invariant that all v.ver are the same version numbers
as Q.ver , denoted as ∀u, v ∈ Q : u.ver = v.ver = Q.ver .

The dequeue operation preserves the Version Invariant
for all vertices v in Q, as an inconsistent version number
of vertices may lead to wrong results. The steps of updating
Q.ver are shown in Algorithm 9. Initially, we set ver ′ as the

current version of OK (line 1). If ver′ ̸= Q.ver , all vertices
v in Q will have their [Lb(v), L

t(v), v.s, ver ′] updated to the
current new values, with ver ′ as their version numbers (lines
4 - 7). We have to ensure that Ok.cnt = 0 and ver ′ = Ok.ver
during such updating; otherwise, we will redo the updating
(lines 2 and 8). We also have to ensure that v.s is an even
number and is not changed during updating; otherwise, we
have to redo the updating (lines 5 and 7) since other workers
have accessed the vertices in Q and their k-order may be
changed. In other words, no other workers can execute during
the updating. Finally, we set Q.ver to ver ′ since all versions
in Q have the same version as ver ′ (line 6).

Algorithm 9: Q.update version(Ok)

1 ver ′ ← OK .ver
2 if Ok.cnt ̸= 0 ∨ ver ′ ̸= OK .ver then goto line 1
3 if ver ′ ̸= Q.ver then
4 for v ∈ Q do
5 s′ ← v.s
6 Update v with current [Lb(v), L

t(v), s′, ver ′]
7 if ¬Even(s′) ∨ s′ ̸= v.s then goto line 5
8 if OK .cnt ̸= 0 ∨ ver ′ ̸= OK .ver then goto line 1
9 Q.ver ← ver ′

1) Enqueue: The details steps of the enqueue operation
are shown in Algorithm 10. We set ver ′ to the current
version of OK (line 1). For the vertex v, we add the values
of [Lb(v), L

t(v), v.s, ver ′] to Q, with ver ′ as their version
numbers (line 2), and then update Q. If ver ′ is not consistent
with Ok.ver or Qp.ver , we set Qp.ver to ∅, which indicates
the delayed version updating when executing dequeue oper-
ations.

Algorithm 10: Q.enqueue(Ok, v)

1 ver ′, s′ ← OK .ver , v.s
2 Add v into Q with [Lb(v), L

t(v), v.s, ver ′] and then update
Q

3 if ver ′ ̸= OK .ver ∨ ver ′ ̸= Q.ver ∨ s′ ̸= s ∨ ¬Even(s)
then

4 Q.ver ← ∅

2) Dequeue: Algorithm 11 shows the steps of the dequeue
operation. If Q.ver is empty, we update the version of Q so
that all vertices in Q have consistent labels (line 2). In this
case, we obtain v as Q.front(). which has the lowest k-order
by comparing the labels (line 3). We conditionally lock v with
v.core = k as we will skip v when it has v.core ̸= k for the
core maintenance (lines 4 and 5), since v can be accessed by
other workers and has an increased core number. After locking
v, it is necessary to check v’s current status value v.s with v’s
status value in Q (lines 6 and 7). If they are not equal, we
know that v has been accessed by other workers, v.core = k,
and v’s k-order may be changed; then Q.ver is set to empty
to update the version in the next round (line 7). We remove v
from Q and then return v, which is locked with the smallest k-
order with v.core = k (line 11). The whole process continues
until we successfully obtain v from Q or Q is empty (lines 1

JOURNAL OF IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS CLASS FILES, VOL. 18, NO. 9, SEPTEMBER 2020 13

and 8). If no qualified v exists in Q, it will return empty (line
9).

Algorithm 11: Q.dequeue(Ok)

1 while Q ̸= ∅ do
2 if Q.ver = ∅ then Qp.update version(Ok)
3 v ← Q.front()
4 if ¬(Lock v with v.core = k) then
5 Remove v from Q; continue
6 if v.s ̸= [v.s]Q then
7 Unlock(v); Qp.ver ← ∅; continue
8 Remove v from Qp; return v
9 return ∅

3) Running time: The priority queue can be implemented
by min-heap, which requires worst-case O(log |Q|) time for
both enqueuing and dequeuing one item. For our imple-
mentation, with version updating, the priority queue requires
worst-case O(log |Q) for enqueuing and O(|Q| log |Q|) for
dequeuing, as we may rebuild the min-heap each time when
removing a vertex. However, such a worst-case can happen
with a low probability, as vertices are always inserted into the
different positions of OK and only a limited number of relable
procedures can be triggered. Also, when inserting a batch of
edges, the sizes of Q is always small, e.g. less than 10, so that
the process of updating version tends to not affect the dequeue
performance.

VI. EXPERIMENTS

In this section, we experimentally compare our parallel core
maintenance approach with the state-of-the-art join-edge-set
core maintenance approach [22]. There are four algorithms:

– our parallel edge insertion algorithm (OurI for short)
and removal algorithm (OurR for short),

– the join edge set based parallel edge insertion algorithm
(JEI for short) and removal algorithm (JER for short)

A. Experiment Setup

The experiments are performed on a server with an AMD
CPU (64 cores, 128 hyperthreads, 256 MB of last-level shared
cache) and 256 GB of main memory. The server runs the
Ubuntu Linux (22.04) operating system. All tested algorithms
are implemented in C++ and compiled with g++ version
11.2.0 with the -O3 option. OpenMP 1 version 4.5 is used
as the threading library. Our OurI and OurR use locks for
synchronization, which are implemented by the CAS primitive
for busy waiting. We perform every experiment at least 50
times and calculate their means with 95% confidence intervals.

B. Tested Graphs

We evaluate the performance of different methods over a
variety of real-world and synthetic graphs, which are shown
in Table II. For simplicity, directed graphs are converted
to undirected ones in our testing; all of the self-loops and

1https://www.openmp.org/

TABLE II
TESTED REAL AND SYNTHETIC GRAPHS.

Graph n = |V | m = |E| AvgDeg Max k

livej 4,847,571 68,993,773 14.23 372
patent 6,009,555 16,518,948 2.75 64
wikitalk 2,394,385 5,021,410 2.10 131
roadNet-CA 1,971,281 5,533,214 2.81 3

dbpedia 3,966,925 13,820,853 3.48 20
baidu 2,141,301 17,794,839 8.31 78
pokec 1,632,804 30,622,564 18.75 47
wiki-talk-en 2,987,536 24,981,163 8.36 210
wiki-links-en 5,710,993 130,160,392 22.79 821

ER 1,000,000 8,000,000 8.00 11
BA 1,000,000 8,000,000 8.00 8
RMAT 1,000,000 8,000,000 8.00 237

DBLP 1,824,701 29,487,744 16.17 286
Flickr 2,302,926 33,140,017 14.41 600
StackOverflow 2,601,977 63,497,050 24.41 198
wiki-edits-sh 4,589,850 40,578,944 8.84 47

repeated edges are removed. That is, a vertex can not connect
to itself, and each pair of vertices can connect with at most one
edge. The livej, patent, wiki-talk, and roadNet-CA graphs are
obtained from SNAP2. The dbpedia, baidu, pokec and wiki-
talk-en wiki-links-en graphs are collected from the KONECT3

project. The ER, BA, and RMAT graphs are synthetic graphs;
they are generated by the SNAP4 system using Erdös-Rényi,
Barabasi-Albert, and the R-MAT graph models, respectively.
For these generated graphs, the average degree is fixed to
8 by choosing 1,000,000 vertices and 8,000,000 edges. All
the above twelve graphs are static graphs, and we randomly
sample edges for insertion and removal.

We also select four real temporal graphs, DBLP, Flickr,
StackOverflow, and wiki-edits-sh from KONECT. For a tem-
poral graph, each edge has a timestamp recording the time of
this edge inserted into the graph. We select a batch of edges
within a continuous time range for insertion and removal.

In Table II, we can see that all graphs have millions of
edges, their average degrees ranges from 2.1 to 22.8, and
their maximal core numbers ranges from 3 to 821. For most
graphs, the core numbers are not well distributed. That is,
a great portion of vertices have small core numbers, and few
have large core numbers. For example, wikitalk has 1.7 million
vertices with a core number of 1; roadNet-CA has four core
numbers from 0 to 3; ER has nine core numbers from 2 to
11; BA only has a single core number of 8. For JEI and
JER, the core number distribution of graphs is an important
property since the vertices with the same core number can only
be handled by one worker at the same time, e.g., in BA only
one worker can execute and all the other workers are wasted.
However, OurI and OurR do not have such a limitation for
parallelism, so all workers can always run in parallel over all
tested graphs.

JOURNAL OF IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS CLASS FILES, VOL. 18, NO. 9, SEPTEMBER 2020 14

1 2 4 8 16 32 64
Number of Workers

102

103

Ru
nn

in
g

Ti
m

e(
m

s)
livej

OurI
OurR

JEI
JER

1 2 4 8 16 32 64
Number of Workers

102

103

Ru
nn

in
g

Ti
m

e(
m

s)

patent
OurI
OurR

JEI
JER

1 2 4 8 16 32 64
Number of Workers

2 × 102

3 × 102

4 × 102

6 × 102

Ru
nn

in
g

Ti
m

e(
m

s)

wikitalk

OurI
OurR

JEI
JER

1 2 4 8 16 32 64
Number of Workers

102

Ru
nn

in
g

Ti
m

e(
m

s)

roadNet-CA

OurI
OurR

JEI
JER

1 2 4 8 16 32 64
Number of Workers

102

103

Ru
nn

in
g

Ti
m

e(
m

s)

dbpedia
OurI
OurR

JEI
JER

1 2 4 8 16 32 64
Number of Workers

102

103

Ru
nn

in
g

Ti
m

e(
m

s)

baidu

OurI
OurR

JEI
JER

1 2 4 8 16 32 64
Number of Workers

102

103

Ru
nn

in
g

Ti
m

e(
m

s)

pokec

OurI
OurR

JEI
JER

1 2 4 8 16 32 64
Number of Workers

103

Ru
nn

in
g

Ti
m

e(
m

s)

wiki-talk-en

OurI
OurR

JEI
JER

1 2 4 8 16 32 64
Number of Workers

103

6 × 102

2 × 103

3 × 103

Ru
nn

in
g

Ti
m

e(
m

s)

wiki-links-en
OurI
OurR

JEI
JER

1 2 4 8 16 32 64
Number of Workers

102

103

Ru
nn

in
g

Ti
m

e(
m

s)

ER
OurI
OurR

JEI
JER

1 2 4 8 16 32 64
Number of Workers

102

103

104

Ru
nn

in
g

Ti
m

e(
m

s)

BA

OurI
OurR

JEI
JER

1 2 4 8 16 32 64
Number of Workers

103

Ru
nn

in
g

Ti
m

e(
m

s)

RMAT

OurI
OurR

JEI
JER

1 2 4 8 16 32 64
Number of Workers

102

103

Ru
nn

in
g

Ti
m

e(
m

s)

DBLP
OurI
OurR

JEI
JER

1 2 4 8 16 32 64
Number of Workers

102

103

Ru
nn

in
g

Ti
m

e(
m

s)

flickr
OurI
OurR

JEI
JER

1 2 4 8 16 32 64
Number of Workers

103

Ru
nn

in
g

Ti
m

e(
m

s)

StackOverflow

OurI
OurR

JEI
JER

1 2 4 8 16 32 64
Number of Workers

103

2 × 103

Ru
nn

in
g

Ti
m

e(
m

s)

wiki-edits-sh

OurI
OurR

JEI
JER

Fig. 4. The real running time by varying the number of workers. The x-axis is the number of workers, and the y-axis is the execution time (millisecond).
The error bars are too small to show.

C. Running Time Evaluation

In this experiment, we exponentially increase the number of
workers from 1 to 64 to evaluate the real running time over
graphs in Table II. For each graph, we first randomly select
100,000 edges. We measure the accumulated running time
for inserting or removing such 100,000 edges. The plots In
Fig. 4 depict the performance of the four compared algorithms.
The first look over all tested graphs reveals that OurI and
OurR always have better performance than JEI and JER,
respectively. Specifically, we make several observations:

– By using one worker, all algorithms are reduced to
running sequentially, and OurI performs much faster
than JEI. This is because for edge insertion, OurI is
based on the ORDER algorithm, while JEI is based on
the TRAVERSAL algorithm. It is proved that the ORDER is
much faster than TRAVERSAL for sequential version [17].
Also, JEI requires the preprocessing time to generate the

2http://snap.stanford.edu/data/index.html
3http://konect.cc/networks/
4http://snap.stanford.edu/snappy/doc/reference/generators.html

join edge sets, while OurI can run on-the-fly without
preprocessing.

– By using one worker, OurR does not always perform
better than JER. This is because our method uses arrays
to store edges, which can save space, while the join-edge-
set-based method uses binary search trees to store edges.
When deleting an edge (u, v), OurR has to traverse all
vertices of u.adj and v.adj , while JER only needs to
traverse log |u.adj | and log |v.adj | vertices. That means
OurR has a higher running time than JER to delete an
edge from the graph.

– By using multiple workers, OurI and OurR can always
achieve better speedups compare with JEI and JER,
respectively. This is because JEI and JER have limited
parallelism, as affected vertices with different core num-
bers can not be processed in parallel, while OurI and
OurR do not have such a limitation. On many real graphs,
e.g., wikitalk, roadNet-CA, ER, BA and RMAT, the core
numbers are not well-distributed, and a large percent of
vertices have the same core numbers. Over such graphs,
by increasing the number of workers, JEI and JER have

JOURNAL OF IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS CLASS FILES, VOL. 18, NO. 9, SEPTEMBER 2020 15

TABLE III
COMPARE THE SPEEDUPS.

1-worker vs 16-worker 1-worker 16-worker
Graph OurI OurR JEI JER OurI vs JEI OurR vs JER OurI vs JEI OurR vs JER

livej 3.2 3.9 3.8 0.8 3.6 1.3 3.0 6.5
patent 3.4 3.4 2.9 0.9 11.0 1.9 13.0 7.6
wikitalk 1.8 4.4 1.0 0.7 1.3 0.5 2.3 2.9
roadNet-CA 2.6 1.5 0.9 1.0 2.1 2.3 5.7 3.7
dbpedia 2.1 1.8 1.5 0.8 5.7 0.3 8.1 0.7
baidu 3.5 5.2 1.2 0.7 1.9 0.8 5.7 6.3
pokec 4.8 4.7 1.4 0.8 6.0 1.6 20.9 9.3
wiki-talk-en 1.5 4.5 0.8 0.8 2.2 0.6 4.1 3.4
wiki-links-en 2.3 3.9 4.4 1.2 1.3 0.6 0.7 1.8
ER 3.8 4.4 0.9 1.0 16.8 2.2 70.9 10.1
BA 5.4 2.9 0.9 0.9 49.6 3.2 289.1 10.6
RMAT 2.4 4.3 0.7 0.6 2.8 1.1 9.5 7.7
DBLP 1.3 1.0 2.4 0.6 10.8 2.8 5.9 4.9
flickr 1.2 1.6 1.0 0.7 11.6 2.3 14.3 5.0
StackOverflow 2.8 3.2 1.3 0.9 4.3 1.0 8.8 3.7
wiki-edits-sh 1.1 1.4 1.1 0.8 0.8 0.4 0.8 0.7

no speedups since one worker needs to traverse a large
subgraph, which takes a great amount of time, but OurI
and OurR can always obtain speedups since all workers
have almost equal probability to traverse the graphs.

– The running time of all tested algorithms may begin to
increase when using more than 8 or 16 workers in certain
graphs, e.g., livej, patent, and dbpedia. This is because of
the contention on the shared data structures with multiple
workers, and more workers may lead to higher contention.
In addition, for JEI and JER, when the core numbers of
vertices in graphs are not well distributed, some workers
are wasted, which results in extra overheads.

In Table III, columns 2 to 5 compare the running time
speedups between using one worker and 16 workers for all
tested algorithms. It is clear that OurI and OurR consistently
achieve better speedups up to 5x, compared with JEI and
JER. Columns 6 to 9 compare the running time speedups
between our method and the compared method using one
worker or 16 workers. We can see that compared with JEI,
OurI achieves up to a 50x speedup even using one worker,
and achieves up to a 289x speedup when using 16 workers.
We observe that compared with JER, OurR does not always
achieve speedups when using a single worker, but achieves up
to 10x speedups when using 16 workers. Especially, over wiki-
edits-sh, OurI and OurR run slower than JEI and JER when
using 1 worker and 16 workers, respectively. The reason is that
the special properties of graphs may affect the performance of
our algorithms.

D. Scalability Evaluation
In this experiment, we test the scalability over four selected
graphs, livej, baidu, dbpedia, roadNet-CA. For each graph, we
first randomly select 100,000 to 1 million edges. By using 16
workers, we measure the accumulated running time and eval-
uate the ratio of real running time between the corresponding
size of edges and 100,000 edges. The plots in Fig. 5 depict
the performance of the four compared algorithms. Ideally, 1
million edges should have a ratio of 10 since the edge size
is 10 times of 100,000. We observe that over livej, the four

200000 400000 600000 800000 1000000
Size of Edges

2

4

6

8

10

Ru
nn

in
g

Ti
m

e
Ra

tio

livej
OurI
OurR

JEI
JER

200000 400000 600000 800000 1000000
Size of Edges

0

5

10

15

20

25

Ru
nn

in
g

Ti
m

e
Ra

tio

baidu
OurI
OurR

JEI
JER

200000 400000 600000 800000 1000000
Size of Edges

2

4

6

8

10

Ru
nn

in
g

Ti
m

e
Ra

tio

dbpedia
OurI
OurR

JEI
JER

200000 400000 600000 800000 1000000
Size of Edges

2

4

6

8

10

12

Ru
nn

in
g

Ti
m

e
Ra

tio

roadNet-CA
OurI
OurR

JEI
JER

Fig. 5. The running time ratio with 16 workers by varying the size of the
inserted or removed edges. The x-axis is the size of inserted or removed edges,
and the y-axis is the time ratio.

algorithms always have similar time ratios with increased an
edge size. Over other graphs, OurI and OurR always have
larger time ratios compared to JEI and JER, respectively.
Further, OurI has a time ratio of up to 20 when applying 1
million edges. This is because JEI or JER adopts the joint
edge set structure to preprocess a batch of updated edges; if
there are more updated edges, they can process more edges in
each iteration and avoid unnecessary access. However, OurI
and OurR do not preprocess a batch of updated edges, so
more edges require more accumulated running time.

We also observe that even with 1 million edges, OurI
and OurR still have better performance than JEI and JER,
respectively. Over four tested graphs, OurI still has 2.6x,
1.9x, 3.8x and 3.0x speedups compared with JEI, and OuR
also has 7.8x, 5.5x, 0.9x and 3.3x speedups compared to JER,
respectively. The reason is that OurI and OurR (based on the
ORDER algorithm) have less work than JEI and JER (based
on the TRAVERSAL algorithm; also, unlike OurI and OurR,
JEI and JER have extra cost to preprocess the edges.

JOURNAL OF IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS CLASS FILES, VOL. 18, NO. 9, SEPTEMBER 2020 16

E. Stability Evaluation
In this experiment, we test the stability over four selected

graphs, livej, baidu, dbpedia, roadNet-CA, by using 16 work-
ers. First, we randomly sample 5, 000, 000 edges and partition
them into 50 groups, where each group has totally different
100, 000 edges. Second, for each group, we measure the
accumulated running time of different methods. That is, the
experiments run 50 times, and each time has totally different
inserted or removed edges.

The plots in Fig. 6 depict the result. We observe that
the performance of OurI, OurR, and JER are always well-
bounded, but the performance of JEI has larger fluctuations.
The reason is that JEI is based on the TRAVERSAL algorithm
and OurI is based on the ORDER algorithm. It is proved
that for edge insertion, the TRAVERSAL algorithm has a
large fluctuations ratio of |V +|/|V ∗| for different edges with
high probability, while the ORDER algorithm does not have
this problem. For edge removal, both OurR and JER have
V + = V ∗, so their performance remains stable for different
batches of edges.

0 10 20 30 40 50
Repeated Times

200

400

600

Ru
nn

in
g

Ti
m

e(
m

s)

livej

OurI
OurR

JEI
JER

0 10 20 30 40 50
Repeated Times

250

500

750

1000

Ru
nn

in
g

Ti
m

e(
m

s)

baidu
OurI
OurR

JEI
JER

0 10 20 30 40 50
Repeated Times

200

400

600

800

1000

Ru
nn

in
g

Ti
m

e(
m

s)

dbpedia
OurI
OurR

JEI
JER

0 10 20 30 40 50
Repeated Times

100

200

300

400

Ru
nn

in
g

Ti
m

e(
m

s)

roadNet-CA

OurI
OurR

JEI
JER

Fig. 6. The running time with 16-worker by varying a batch of inserted or
removed edges for each time. The x-axis is the repeated times, and the y-axis
is the running times.

VII. CONCLUSIONS AND FUTURE WORK

We present new parallel core maintenance algorithms for
inserting and removing a batch of edges based on the ORDER
algorithm. A set V + of vertices is traversed. We use locks for
synchronization. Only the vertices in V + are locked, and their
associated edges are not necessarily locked, which allows high
parallelism.

The proposed parallel methodology can be applied to other
graphs, e.g. weighted graphs and probability graphs. It can
also be applied to other graph algorithms, e.g. maintaining the
k-truss in dynamic graphs. Additionally, the maintenance of
the hierarchical k-core involves maintaining the connections
among different k-cores in the hierarchy, which can benefit
from our result.

REFERENCES

[1] V. Batagelj and M. Zaversnik, “An O(m) algorithm for cores
decomposition of networks,” CoRR, vol. cs.DS/0310049, 2003.
[Online]. Available: http://arxiv.org/abs/cs/0310049

[2] Y.-X. Kong, G.-Y. Shi, R.-J. Wu, and Y.-C. Zhang, “k-core: Theories
and applications,” Physics Reports, vol. 832, pp. 1–32, 2019.

[3] P. Wang, X. Deng, Y. Liu, L. Guo, J. Zhu, L. Fu, Y. Xie, W. Li, and J. Lai,
“A knowledge discovery method for landslide monitoring based on k-
core decomposition and the louvain algorithm,” ISPRS International
Journal of Geo-Information, vol. 11, no. 4, p. 217, 2022.

[4] R. Dorantes-Gilardi, D. Garcı́a-Cortés, E. Hernández-Lemus, and
J. Espinal-Enrı́quez, “k-Core genes underpin structural features of breast
cancer,” Scientific Reports, vol. 11, no. 1, pp. 1–17, 2021.

[5] P. Gao, J. Huang, and Y. Xu, “A k-core decomposition-based opinion
leaders identifying method and clustering-based consensus model for
large-scale group decision making,” Computers & Industrial Engineer-
ing, vol. 150, p. 106842, 2020.

[6] K. Burleson-Lesser, F. Morone, M. S. Tomassone, and H. A. Makse, “k-
core robustness in ecological and financial networks,” Scientific reports,
vol. 10, no. 1, pp. 1–14, 2020.

[7] F. D. Malliaros, C. Giatsidis, A. N. Papadopoulos, and M. Vazirgiannis,
“The core decomposition of networks: Theory, algorithms and
applications,” The VLDB Journal, vol. 29, no. 1, pp. 61–92, 2020.
[Online]. Available: https://doi.org/10.1007/s00778-019-00587-4

[8] J. Cheng, Y. Ke, S. Chu, and M. T. Özsu, “Efficient core decomposition
in massive networks,” in 2011 IEEE 27th International Conference on
Data Engineering. IEEE, 2011, pp. 51–62.

[9] W. Khaouid, M. Barsky, V. Srinivasan, and A. Thomo, “k-core decom-
position of large networks on a single pc,” Proceedings of the VLDB
Endowment, vol. 9, no. 1, pp. 13–23, 2015.

[10] A. Montresor, F. De Pellegrini, and D. Miorandi, “Distributed k-core
decomposition,” IEEE Transactions on parallel and distributed systems,
vol. 24, no. 2, pp. 288–300, 2012.

[11] D. Wen, L. Qin, Y. Zhang, X. Lin, and J. X. Yu, “I/o efficient core
graph decomposition at web scale,” in 2016 IEEE 32nd International
Conference on Data Engineering (ICDE). IEEE, 2016, pp. 133–144.

[12] D. Miorandi and F. De Pellegrini, “K-shell decomposition for dynamic
complex networks,” in 8th International Symposium on Modeling and
Optimization in Mobile, Ad Hoc, and Wireless Networks. IEEE, 2010,
pp. 488–496.

[13] S. Pei, L. Muchnik, J. S. Andrade Jr, Z. Zheng, and H. A. Makse,
“Searching for superspreaders of information in real-world social me-
dia,” Scientific reports, vol. 4, p. 5547, 2014.

[14] K. Gabert, A. Pinar, and Ü. V. Çatalyürek, “Shared-memory scalable k-
core maintenance on dynamic graphs and hypergraphs,” in 2021 IEEE
International Parallel and Distributed Processing Symposium Workshops
(IPDPSW). IEEE, 2021, pp. 998–1007.

[15] F. Zhang, B. Liu, and Q. Fang, “Core decomposition, maintenance and
applications,” in Complexity and Approximation. Springer, 2020, pp.
205–218.

[16] B. Guo and E. Sekerinski, “Simplified algorithms for order-based core
maintenance,” arXiv preprint arXiv:2201.07103, 2022.

[17] Y. Zhang, J. X. Yu, Y. Zhang, and L. Qin, “A fast order-based approach
for core maintenance,” in Proceedings - International Conference on
Data Engineering, 2017, pp. 337–348.

[18] A. E. Sarıyüce, B. Gedik, G. Jacques-Silva, K.-L. Wu, and Ü. V.
Çatalyürek, “Incremental k-core decomposition: algorithms and eval-
uation,” The VLDB Journal, vol. 25, no. 3, pp. 425–447, 2016.

[19] H. Wu, J. Cheng, Y. Lu, Y. Ke, Y. Huang, D. Yan, and H. Wu, “Core
decomposition in large temporal graphs,” in 2015 IEEE International
Conference on Big Data (Big Data). IEEE, 2015, pp. 649–658.

[20] A. E. Sarı́yüce, B. Gedik, G. Jacques-Silva, K.-L. Wu, and Ü. V.
Çatalyürek, “Streaming algorithms for k-core decomposition,” Proceed-
ings of the VLDB Endowment, vol. 6, no. 6, pp. 433–444, 2013.

[21] R.-H. Li, J. X. Yu, and R. Mao, “Efficient core maintenance in
large dynamic graphs,” IEEE Transactions on Knowledge and Data
Engineering, vol. 26, no. 10, pp. 2453–2465, 2013.

[22] Q.-S. Hua, Y. Shi, D. Yu, H. Jin, J. Yu, Z. Cai, X. Cheng, and H. Chen,
“Faster parallel core maintenance algorithms in dynamic graphs,” IEEE
Transactions on Parallel and Distributed Systems, vol. 31, no. 6, pp.
1287–1300, 2019.

[23] H. Jin, N. Wang, D. Yu, Q. S. Hua, X. Shi, and X. Xie, “Core Main-
tenance in Dynamic Graphs: A Parallel Approach Based on Matching,”
IEEE Transactions on Parallel and Distributed Systems, vol. 29, no. 11,
pp. 2416–2428, nov 2018.

[24] N. Wang, D. Yu, H. Jin, C. Qian, X. Xie, and Q.-S. Hua, “Parallel
algorithm for core maintenance in dynamic graphs,” in 2017 IEEE 37th
International Conference on Distributed Computing Systems (ICDCS).
IEEE, 2017, pp. 2366–2371.

[25] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction
to algorithms. MIT press, 2022.

JOURNAL OF IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS CLASS FILES, VOL. 18, NO. 9, SEPTEMBER 2020 17

[26] B. Guo and E. Sekerinski, “New parallel order maintenance data
structure,” arXiv preprint arXiv:2208.07800, 2022.

[27] J. JéJé, An introduction to parallel algorithms. Reading, MA: Addison-
Wesley, 1992.

[28] N. S. Dasari, R. Desh, and M. Zubair, “Park: An efficient algorithm
for k-core decomposition on multicore processors,” in 2014 IEEE
International Conference on Big Data (Big Data). IEEE, 2014, pp.
9–16.

[29] H. Kabir and K. Madduri, “Parallel k-core decomposition on multicore
platforms,” in 2017 IEEE International Parallel and Distributed Process-
ing Symposium Workshops (IPDPSW). IEEE, 2017, pp. 1482–1491.

[30] B. Sun, T.-H. H. Chan, and M. Sozio, “Fully dynamic approximate k-
core decomposition in hypergraphs,” ACM Transactions on Knowledge
Discovery from Data (TKDD), vol. 14, no. 4, pp. 1–21, 2020.

[31] M. Yu, D. Wen, L. Qin, Y. Zhang, W. Zhang, and X. Lin, “On querying
historical k-cores,” Proceedings of the VLDB Endowment, vol. 14,
no. 11, pp. 2033–2045, 2021.

[32] Z. Lin, F. Zhang, X. Lin, W. Zhang, and Z. Tian, “Hierarchical core
maintenance on large dynamic graphs,” Proceedings of the VLDB
Endowment, vol. 14, no. 5, pp. 757–770, 2021.

[33] T. Weng, X. Zhou, K. Li, P. Peng, and K. Li, “Efficient distributed
approaches to core maintenance on large dynamic graphs,” IEEE Trans-
actions on Parallel and Distributed Systems, vol. 33, no. 1, pp. 129–143,
2021.

[34] Q. C. Liu, J. Shi, S. Yu, L. Dhulipala, and J. Shun, “Parallel batch-
dynamic algorithms for k-core decomposition and related graph prob-
lems,” In Proceedings of the 34th ACM Symposium on Parallelism in
Algorithms and Architectures (SPAA ’22), 2021.

[35] W. Zhou, H. Huang, Q.-S. Hua, D. Yu, H. Jin, and X. Fu, “Core
decomposition and maintenance in weighted graph,” World Wide Web,
vol. 24, no. 2, pp. 541–561, 2021.

[36] B. Liu and F. Zhang, “Incremental algorithms of the core maintenance
problem on edge-weighted graphs,” IEEE Access, vol. PP, pp. 1–1, 04
2020.

[37] P. Dietz and D. Sleator, “Two algorithms for maintaining order in a list,”
in Proceedings of the nineteenth annual ACM symposium on Theory of
computing, 1987, pp. 365–372.

[38] M. A. Bender, R. Cole, E. D. Demaine, M. Farach-Colton, and J. Zito,
“Two simplified algorithms for maintaining order in a list,” in European
Symposium on Algorithms. Springer, 2002, pp. 152–164.

[39] R. Utterback, K. Agrawal, J. T. Fineman, and I.-T. A. Lee, “Provably
good and practically efficient parallel race detection for fork-join pro-
grams,” in Proceedings of the 28th ACM Symposium on Parallelism in
Algorithms and Architectures, 2016, pp. 83–94.

[40] T. G. Mattson, Y. He, and A. E. Koniges, “The openmp common core,”
2019.

[41] M. Herlihy, N. Shavit, V. Luchangco, and M. Spear, The art of
multiprocessor programming. Newnes, 2020.

