
Parallel Order-Based Core Maintenance in Dynamic Graphs
Bin Guo

McMaster University
Hamilton, Canada

guob15@mcmaster.ca

Emil Sekerinski
McMaster University
Hamilton, Canada
emil@mcmaster.ca

ABSTRACT
The core numbers of vertices in a graph are one of the most well-
studied cohesive subgraph models because of the linear running
time. In practice, many data graphs are dynamic graphs that are
continuously changing by inserting or removing edges. The core
numbers are updated in dynamic graphs with edge insertions and
deletions, which is called core maintenance. When a burst of a large
number of inserted or removed edges come in, we have to handle
these edges on time to keep up with the data stream. There are two
main sequential algorithms for core maintenance, Traversal and
Order. The experiments show that the Order algorithm signifi-
cantly outperforms the Traversal algorithm over a variety of real
graphs.

To the best of our knowledge, all existing parallel approaches
are based on the Traversal algorithm. These algorithms exploit
parallelism only for vertices with different core numbers; they
reduce to sequential algorithmswhen all vertices have the same core
numbers. In this paper, we propose a new parallel core maintenance
algorithm based on the Order algorithm. Our approach always has
parallelism, even for graphs where all vertices have the same core
numbers. Extensive experiments are conducted over real-world,
temporal, and synthetic graphs on a multicore machine. The results
show that for inserting and removing a batch of edges using 16
workers, our method achieves up to 289x and 10x times speedups
compared with the most efficient existing method, respectively.

CCS CONCEPTS
• Computing methodologies→ Shared memory algorithms.

KEYWORDS
Dynamic Graphs, 𝑘-Core Maintenance, Parallel, Multicore
ACM Reference Format:
Bin Guo and Emil Sekerinski. 2023. Parallel Order-Based Core Maintenance
in Dynamic Graphs. In 52nd International Conference on Parallel Processing
(ICPP 2023), August 07–10, 2023, Salt Lake City, UT, USA. ACM, New York,
NY, USA, 10 pages. https://doi.org/10.1145/3605573.3605597

1 INTRODUCTION
Graphs are widely used to model complex networks. As one of
the well-studied cohesive subgraph models, the 𝑘-core is defined

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ICPP 2023, August 07–10, 2023, Salt Lake City, UT, USA
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0843-5/23/08. . . $15.00
https://doi.org/10.1145/3605573.3605597

as the maximal subgraph such that all vertices have degrees at
least 𝑘 . Here, the core number of a vertex is defined as the maximum
value of 𝑘 such that this vertex is contained in the subgraph of
𝑘-core [1, 17]. The core numbers can be computed with linear
time 𝑂 (𝑚) by the BZ algorithm [1], where 𝑚 is the number of
edges in a graph. Due to such computational efficiency, the core
number of a vertex can be a parameter of density extensively used in
numerous applications [17], such as knowledge discovery [31], gene
expression [8], social networks [10], ecology [3], and finance [3].

In [22], Malliaros, et al. summarize the main research work re-
lated to 𝑘-core decomposition from 1968 to 2019. Many papers focus
on computing the core in static graphs [1, 4, 16, 24, 32]. In practice,
many data graphs are both large and continuously changing. It is
important to identify the dense range as fast as possible after a
change, e.g., multiple edges are inserted or removed. For example, it
is necessary to quickly initiate a response to rapidly spreading false
information about vaccines or to urgently address new pandemic
super-spreading events [9, 23, 25]. This is a problem of maintaining
the core number in dynamic graphs. In [36], Zhang, et al. summarize
the research on core maintenance and applications.

Many sequential algorithms are devised on core maintenance
in dynamic graphs [12, 18, 26, 27, 34, 37]. The main idea for core
maintenance is that we first need to identify a set of vertices whose
core numbers need to be updated (denoted as 𝑉 ∗) by traversing a
possibly larger scope of vertices (denoted as𝑉 +). There are twomain
algorithms,Order [37] and Traversal [27]. Given an inserted edge,
the Order algorithm has to traverse much fewer vertices than the
Traversal algorithm by maintaining the order for all vertices. That
is why the Order algorithm has significantly improved running
time. In [12], a Simplified-Order algorithm is proposed for easy
understanding and implementation based on the Order algorithm.

All the above methods are sequential for maintaining core num-
bers over dynamic graphs, which means each time only one insert
or removal edge is handled. The problem is that when a burst of a
large number of inserted or removed edges comes in, these edges
may not be handled on time to keep up with the data stream [9]. The
prevalence of multi-core machines suggests parallelizing the core
maintenance algorithms. Many multi-core parallel batch algorithms
for core maintenance have been proposed in [13, 14, 30]. All above
methods have similar ideas: 1) they use an available structure, e.g.
Join Edge Set [13] or Matching Edge Set [14], to preprocess a batch
of inserted or removed edges avoiding repeated computations, and
2) each worker performs the Traversal algorithm. There are two
drawbacks to these approaches. First, they are based on the sequen-
tial Traversal algorithm [18, 26], which is much less efficient than
the Order algorithm [12, 13]. Second, they exploit the parallelism
only for vertices with different core numbers, that is, they reduce
to sequential algorithms when all affected vertices have the same
core numbers.

122

https://doi.org/10.1145/3605573.3605597
https://doi.org/10.1145/3605573.3605597
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3605573.3605597&domain=pdf&date_stamp=2023-09-13

ICPP 2023, August 07–10, 2023, Salt Lake City, UT, USA Bin Guo and Emil Sekerinski

To overcome the above drawbacks, inspired by the Simplified-
Order algorithm [12], we propose a new parallel algorithm to
maintain core numbers for dynamic graphs, so-called the Parallel-
Order algorithm. That is, each worker handles one inserted or
removed edge at a time and propagates the affected vertices in
order, and we lock vertices for synchronization. The parallel order
maintenance data structure [11] is adopted to maintain the order for
all vertices. We use the work and depth model to analyze our parallel
algorithm, where the work is the total amount of computations
performed by the algorithm and the depth is the longest chain of
sequential dependencies [5]. For edge insertion and removal, our
parallel approach has the same work as the sequential Simplified-
Order algorithm [12]. The main contributions of our work are
summarized below:
• For edge insertion and removal, we design novel mechanisms for
synchronization by only locking vertices in𝑉 + instead of locking
all accessed edges. In other words, all the neighbors of vertices
in 𝑉 + are not necessarily locked. This is meaningful considering
real graphs always have a much larger number of edges than
vertices, let alone dense graphs. Additionally, for each inserted
or removed edge, the size of 𝑉 + is typically less than 10. Thus, it
has a low probability that multiple workers will block as a chain
and then reduce to sequential execution. Fewer locked vertices
will lead to higher parallelism.
• When inserting edges in parallel, we lock affected vertices in
order to avoid deadlocks. When removing edges in parallel, we
design a conditional lock mechanism to avoid deadlocks. We
prove that deadlocks will never happen.
• We conduct extensive experiments on a multicore machine over
various graphs evaluating the performance of different algo-
rithms.
The rest of this paper is organized as follows. The related work

is discussed in Section 2. The preliminaries are given in Section
3. Our new parallel Order-Based core maintenance algorithms are
proposed in Section 4. We conduct extensive performance studies
and show the results in Section 5, and conclude in Section 6.

2 RELATEDWORK
Core Decomposition. The BZ algorithm [1] has linear running

time 𝑂 (𝑚) by using a bucket structure, where𝑚 is the number of
edges. In [4], an external memory algorithm is proposed, so-called
EMcore, which runs in a top-down manner such that the whole
graph does not have to be loaded into memory. In [32], Wen et
al. provide a semi-external algorithm, which requires 𝑂 (𝑛) size
memory to maintain the information of vertices, where 𝑛 is the
number of vertices. In [16], Khaouid et al. investigate the core
decomposition in a single personal computer over large graphs
by using GraphChi and WebGraph models. In [24], Montresoret
et al. consider the core decomposition in a distributed system. In
addition, the parallel computation of core decomposition in multi-
core processors is first investigated in [6], where the ParK algorithm
was proposed. Based on the main idea of ParK, a more scalable
shared memory parallel algorithm is reported in [15].

Core Maintenance. In [18, 26], an algorithm that is similar to the
Traversal algorithm is given, but this solution has quadratic time
complexity. In [32], a semi-external algorithm for core maintenance

is proposed in order to reduce the I/O cost, but this method is not
optimized for CPU time. In [28], Sun et al. design algorithms to
maintain approximate cores in dynamic hypergraphs in which a
hyperedge may contain one or more participating vertices com-
pared with exactly two in graphs. In [9], Gabert et al. propose
parallel core maintenance algorithms for maintaining cores over
hypergraphs. There exists some research based on core mainte-
nance. In [35], the authors study computing all 𝑘-cores in the graph
snapshot over the time window. In [19], the authors explore the
hierarchy core maintenance. In [33], the distributed approaches to
core maintenance are explored. In [21], the parallel approximate 𝑘-
core decomposition and maintenance approach is proposed, where
bounded approximate core numbers for vertices can be maintained
with high probability.

Weighted Graphs. All the abovework focus on unweighted graphs,
but graphs are weighted in a lot of realistic applications. For an edge-
weighted graph, the degree of a vertex is the sum of the weights
of all its incident edges. But it has a large search range to main-
tain the core numbers after the change by using the traditional
core maintenance algorithms directly, as the degree of a related
vertex may change widely. In [38], Zhou et al. extend the coreness
to weighted graphs and devise weighted core decomposition al-
gorithms; also they devise weighted core maintenance based on
the 𝑘-order [12, 37]. In [20], Liu et al. improve the core decomposi-
tion and incremental maintenance algorithm to suit edge-weighted
graphs.

3 PRELIMINARIES
Let 𝐺 = (𝑉 , 𝐸) be an undirected unweighted graph, where 𝑉 (𝐺)
denotes the set of vertices and 𝐸 (𝐺) represents the set of edges in
𝐺 . When the context is clear, we will use 𝑉 and 𝐸 instead of 𝑉 (𝐺)
and 𝐸 (𝐺) for simplicity, respectively. As 𝐺 is an undirected graph,
an edge (𝑢, 𝑣) ∈ 𝐸 (𝐺) is equivalent to (𝑣,𝑢) ∈ 𝐸 (𝐺). We denote the
number of vertices and edges of𝐺 by 𝑛 and𝑚, respectively. The set
of neighbors of a vertex𝑢 ∈ 𝑉 is defined by𝑢.adj = {𝑣 ∈ 𝑉 : (𝑢, 𝑣) ∈
𝐸}. The degree of a vertex 𝑢 ∈ 𝑉 is defined by 𝑢.deg = |𝑢.adj |.
Definition 3.1 (𝑘-Core). Given an undirected graph 𝐺 = (𝑉 , 𝐸)
and a natural number 𝑘 , a induced subgraph 𝐺𝑘 of 𝐺 is called a
𝑘-core if it satisfies: (1) for ∀𝑢 ∈ 𝑉 (𝐺𝑘), 𝑢 (𝐺𝑘).deg ≥ 𝑘 , and (2) 𝐺𝑘
is maximal. Moreover, 𝐺𝑘+1 ⊆ 𝐺𝑘 , for all 𝑘 ≥ 0, and 𝐺0 is just 𝐺 .

Definition 3.2 (Core Number). Given an undirected graph 𝐺 =

(𝑉 , 𝐸), the core number of a vertex 𝑢 ∈ 𝐺 (𝑉), denoted as 𝑢.core, is
defined as 𝑢.core =𝑚𝑎𝑥{𝑘 : 𝑢 ∈ 𝑉 (𝐺𝑘)}. That means 𝑢.𝑐𝑜𝑟𝑒 is the
largest 𝑘 such that there exists a 𝑘-core containing 𝑢.

Definition 3.3 (𝑘-Subcore). Given a undirected graph 𝐺 = (𝑉 , 𝐸),
a maximal set of vertices 𝑆 ⊆ 𝑉 is called a 𝑘-subcore if (1) ∀𝑢 ∈
𝑆,𝑢.𝑐𝑜𝑟𝑒 = 𝑘 ; (2) the induced subgraph 𝐺 (𝑆) is connected. The
subcore that contains vertex 𝑢 is denoted as sc(u).

Core Decomposition. Given a graph𝐺 , the problem of computing
the core number for each 𝑢 ∈ 𝑉 (𝐺) is called core decomposition.
In [1], Batagelj et al. propose a linear time 𝑂 (𝑚 + 𝑛) algorithm, so-
called BZ algorithm, shown in Algorithm 1. The core number of 𝑢
is determined in line 5. The min-priority queue 𝑄 can be efficiently
implemented by bucket sorting [1], leading to a linear running time
of 𝑂 (𝑚 + 𝑛).

123

Parallel Order-Based Core Maintenance in Dynamic Graphs ICPP 2023, August 07–10, 2023, Salt Lake City, UT, USA

Algorithm 1: BZ algorithm for core decomposition
1 for 𝑢 ∈ 𝑉 do 𝑢.𝑑 ← |𝑢.adj |; 𝑢.𝑐𝑜𝑟𝑒 = ∅
2 𝑄 ← a min-priority queue by 𝑢.𝑑 for all 𝑢 ∈ 𝑉
3 while𝑄 ≠ ∅ do
4 𝑢 ← 𝑄.dequeue ()
5 𝑢.core← 𝑢.𝑑 ; remove 𝑢 from𝐺

6 for 𝑣 ∈ 𝑢.adj do
7 if 𝑢.𝑑 < 𝑣.𝑑 then 𝑣.𝑑 ← 𝑣.𝑑 − 1
8 update𝑄

Core Maintenance. The core numbers for dynamic graphs 𝐺
should be maintained when edges are inserted into and removed
from 𝐺 continuously. The insertion and removal of vertices can be
simulated as a sequence of edge insertions and removals.

Definition 3.4 (Candidate Set 𝑉 ∗ and Searching Set 𝑉 +). Given a
graph𝐺 = (𝑉 , 𝐸), when an edge is inserted or removed, a candidate
set of vertices, denoted as 𝑉 ∗, needs to be identified and the core
numbers of vertices in𝑉 ∗ must be updated. To identify𝑉 ∗, we have
to traverse a possibly larger set of vertices, denoted as 𝑉 +.

Clearly, we have 𝑉 ∗ ⊆ 𝑉 + and an efficient core maintenance
algorithm should have a small ratio of |𝑉 + |/|𝑉 ∗ |. The Order [13]
insertion algorithm has a significantly smaller such ratio compared
with the Traversal [26] insertion algorithm. The Order removal
algorithm has 𝑉 + = 𝑉 ∗ and has to maintain the 𝑘-order of ver-
tices O, which is also faster than Traversal removal algorithm.
This is why we try to parallelize the Order insertion and removal
algorithms in this paper.

In [18, 26], it is proved that after inserting or removing one edge,
the core number of vertices in 𝑉 ∗ increase or decrease at most one,
respectively. Also, when inserting an edge (𝑢, 𝑣), we can search for
𝑉 ∗ in the 𝑘-subcore, where 𝑘 is the lower core numbers between 𝑢
and 𝑣 .

3.1 The Order-Based Core Maintenance
The state-of-the-art core maintenance solution is the Order al-
gorithm [12, 37]. For edge insertion, it is based on three notions,
namely 𝑘-order, candidate degree, and remaining degree. For edge
removal, it uses the notion of a max-core degree [26].

Edge Insertion.

Definition 3.5 (𝑘-Order ⪯). [37] Given a graph𝐺 , the 𝑘-order ⪯ is
defined for any pairs of vertices𝑢 and 𝑣 over the graph𝐺 as follows:
(1) when 𝑢.core < 𝑣 .core, then 𝑢 ⪯ 𝑣 ; (2) when 𝑢.core = 𝑣 .core, then
𝑢 ⪯ 𝑣 if 𝑢’s core number is determined before 𝑣 ’s by the peeling
steps of BZ algorithm.

A 𝑘-order ⪯ is an instance of all the possible vertex sequences
produced by BZ algorithm. When generating the 𝑘-order, there
may be multiple vertices 𝑣 ∈ 𝑄 that have the same value of 𝑢.𝑑
and can be dequeued from 𝑄 at the same time together (Algorithm
1, line 4). When dealing with these vertices with the same value
of 𝑑 , different sequences generate different instances of correct
𝑘-order for all vertices. There are three heuristic strategies, “small
degree first”, “large degree first”, and “random”. The experiments
in [37] show that the “small degree first” consistently has the best

performance over all tested real graphs, and thus we choose this
strategy for implementation and experiments.

For the 𝑘-order, transitivity holds, that is,𝑢 ⪯ 𝑣 if𝑢 ⪯ 𝑤 ∧𝑤 ⪯ 𝑣 .
For each edge insertion and removal, the 𝑘-order will be maintained.
Here, O𝑘 denotes the sequence of vertices in 𝑘-order whose core
numbers are 𝑘 . A sequence O = O0O1O2 · · · over 𝑉 (𝐺) can be
obtained, where O𝑖 ⪯ O𝑗 if 𝑖 < 𝑗 . It is clear that ⪯ is defined over
the sequence of O = O0O1O2 · · · . In other words, for all vertices in
the graph, the sequence O indicates the 𝑘-order ⪯.

Given an undirected graph 𝐺 = (𝑉 , 𝐸) with O in 𝑘-order, each
edge (𝑢, 𝑣) ∈ 𝐸 (𝐺) can be assigned a direction such that 𝑢 ⪯ 𝑣 .
By doing this, a direct acyclic graph (DAG) ®𝐺 = (𝑉 , ®𝐸) can be con-
structed where each edge 𝑢 ↦→ 𝑣 ∈ ®𝐸 (®𝐺) satisfies 𝑢 ⪯ 𝑣 . Of course,
the 𝑘-order of𝐺 is a topological order of ®𝐺 . Here, the successors of 𝑣
is defined as 𝑢 (®𝐺) .𝑝𝑜𝑠𝑡 = {𝑣 | 𝑢 ↦→ 𝑣 ∈ ®𝐸 (®𝐺)}; the predecessors of
𝑣 is defined as 𝑢 (®𝐺).𝑝𝑟𝑒 = {𝑣 | 𝑣 ↦→ 𝑢 ∈ ®𝐸 (®𝐺)}. When the context
is clear, we use 𝑢.post and 𝑢.pre instead of 𝑢 (®𝐺).post and 𝑢 (®𝐺) .pre,
respectively [12].

Definition 3.6 (candidate in-degree). [12, 37] Given a constructed
DAG ®𝐺 (𝑉 , ®𝐸), the candidate in-degree 𝑣 .d∗in is the total number of
𝑣 ’s predecessors located in 𝑉 ∗, denoted as d∗in (𝑣) = |{𝑤 ∈ 𝑣 .𝑝𝑟𝑒 :
𝑤 ∈ 𝑉 ∗}|.
Definition 3.7 (remaining out-degree). [12, 37] Given a constructed
DAG ®𝐺 (𝑉 , ®𝐸), the remaining out-degree 𝑣 .d+out is the total number
of 𝑣 ’s successors without the ones that are confirmed not in 𝑉 ∗,
denoted as 𝑣 .d+out = |{𝑤 ∈ 𝑣 .𝑝𝑜𝑠𝑡 : 𝑤 ∉ V+ \ V ∗}|.

Theorem 3.1. [12] Given a constructed DAG ®𝐺 = (𝑉 , ®𝐸) by
inserting an edge 𝑢 ↦→ 𝑣 with 𝐾 = 𝑢.𝑐𝑜𝑟𝑒 ≤ 𝑣 .𝑐𝑜𝑟𝑒 , the candi-
date set 𝑉 ∗ includes all possible vertices that satisfy: 1) their core
numbers equal to 𝐾 , and 2) their total numbers of candidate in-
degree and remaining out-degree are greater than 𝐾 , denoted as
∀𝑤 ∈ 𝑉 : 𝑤 ∈ 𝑉 ∗ ≡ (𝑤.core = 𝐾 ∧ 𝑤.d∗in +𝑤.d

+
out > 𝐾)

For all vertices 𝑣 in ®𝐺 , we must ensure that 𝑣 .core ≤ 𝑣 .d+out .
When inserting an edge 𝑣 ↦→ 𝑢, we have 𝑣 .d+out increased by 1. If
𝑣 .core > 𝑣 .d+out , edge insertion maintenance is required after adding
𝑣 to𝑉 ∗. Theorem 3.1 shows what qualified vertices should be added
into 𝑉 ∗. In this case, 𝑉 ∗ and 𝑉 + are maintained, which is used to
calculate 𝑣 .d∗in and 𝑣 .d+out when traversing 𝑣 .

Edge Removal.

Definition 3.8 (max-core degree mcd). [12, 27, 37] Given a graph
𝐺 = (𝑉 , 𝐸), for each vertex 𝑣 ∈ 𝑉 , the max-core degree is the
number of 𝑣 ’s neighbors 𝑤 such that 𝑤.𝑐𝑜𝑟𝑒 ≥ 𝑣 .𝑐𝑜𝑟𝑒 , defined as
𝑣 .mcd = |{𝑤 ∈ 𝑣 .adj : 𝑤.core ≥ 𝑣 .core}|.

All vertices 𝑣 in 𝐺 maintain 𝑣 .mcd ≥ 𝑣 .core. When removing
an edge (𝑢, 𝑣), e.g. 𝑣 .core < 𝑢.core, we have 𝑣 .mcd off by 1 and
𝑢.mcd unchanged. In this case, if 𝑣 .mcd < 𝑣 .core, Edge removal
maintenance is required.

3.2 Order Maintenance Data Structure
In the Simplified-Order core maintenance algorithm [12], the
sequential Order Maintenance (OM) data structure [2, 7] is used
to maintain the 𝑘-order. The OM data structure has the following
three operations:

124

ICPP 2023, August 07–10, 2023, Salt Lake City, UT, USA Bin Guo and Emil Sekerinski

- Order(𝑥,𝑦): determine if 𝑥 precedes 𝑦 in the ordered list O;
- Insert(𝑥,𝑦): insert a new item 𝑦 after 𝑥 in the ordered list O;
- Delete(𝑥): delete 𝑥 from the total order in the ordered list O.
Specifically, assume that there are maximal 𝑁 items in the total
order O. All items are assigned labels to indicate the order. In terms
of the Insert operation, a two-level data structure [29] is used. That
is, each item is stored in a bottom-list; each group is stored in a
top-list, which can contain Ω(log𝑁) items. Both the top-list and
the bottom-list are organized as double-linked lists. Each item 𝑥

has a top-label 𝐿𝑡 (𝑥), which equals to 𝑥 ’s group label denoted as
𝐿𝑡 (𝑥) = 𝐿(𝑥 .group), and bottom-label 𝐿𝑏 (𝑥), which is 𝑥 ’s label. The
Order(𝑥,𝑦) operation can determine if 𝑥 precedes 𝑦 by comparing
the labels, denoted as 𝑥 ⪯ 𝑦 ≡ 𝐿𝑡 (𝑥) < 𝐿𝑡 (𝑦) ∨ (𝐿𝑡 (𝑥) = 𝐿𝑡 (𝑦) ∧
𝐿𝑏 (𝑥) < 𝐿𝑏 (𝑦)), which requires 𝑂 (1) time.

For Insert(𝑥,𝑦) operation, when there is enough label space af-
ter 𝑥 , 𝑦 can successfully obtain a new label in𝑂 (1) time. Otherwise,
the 𝑥 ’s group 𝑔 is full, which triggers a relabel process. Specifically,
the relabel operations have two steps:
- Rebalance: if there has no label space after 𝑥 ’s group 𝑔, we have
to rebalance the top-labels of groups. From 𝑔, we continuously
traverse the successors 𝑔′ until 𝐿(𝑔′) − 𝐿(𝑔) > 𝑗2, where 𝑗 is
the number of traversed groups. Then, new group labels can be
assigned with the gap 𝑗 , in which newly created groups can be
inserted. Finally, a new group can be inserted after 𝑔.

- Split: when 𝑥 ′ group 𝑔 is full, 𝑔 is split out one new group, which
contains at most log𝑁

2 items and new bottom-labels 𝐿𝑏 are uni-
formly assigned for items in new groups. Newly created groups
are inserted after 𝑔, where we can create the label space by the
above rebalance operation.
The Insert(𝑥,𝑦) operation costs amortized 𝑂 (1) time as the

relabel process costs amortized 𝑂 (1) time for each Insert oper-
ation. Additionally, the Delete(𝑥) operation can directly remove
𝑥 without affecting the labels by 𝑂 (1) time. Based on the above
sequential OM data structure, a parallel version of the OM data
structure is designed in [11].

In this work, we adopt the parallel OM data structure [11] to
maintain the 𝑘-order in parallel for three advantages. First, our
method has a larger portion of Order operations to compare the
order of two items compared with Insert and Delete operations.
The lock-free Order operations are efficient even if multiple works
are inserting or removing vertices at the same time. Second, all
three operations cost 𝑂 (1) works, which will not scarify the work
complexity of our core maintenance. Third, the labels of vertices,
which indicate their order, and can be used to implement the priority
queue𝑄 . Here,𝑄 is the key data structure for our core maintenance
in Algorithm 5.

3.3 Atomic Primitive and Lock
The compare-and-swap atomic primitive CAS(𝑥, 𝑎, 𝑏) takes a vari-
able (location) 𝑥 , an old value 𝑎, and a new value 𝑏. It checks the
value of 𝑥 , and if it equals 𝑎, it updates the variable to 𝑏 and returns
true; otherwise, it returns false to indicate that updating failed. In
this work, we use locks for synchronization in our parallel algo-
rithms. The lock operations can be implemented by CAS which is
available in most modern architectures. Using the variable 𝑥 as a

Algorithm 2: Lock(𝑥) with 𝑐
1 while 𝑐 do
2 if 𝑥 = false ∧ CAS(x, false, true) then
3 if 𝑐 then return true
4 else 𝑥 ← false; return false
5 return false

lock, the CAS will repeatedly check 𝑥 , and set 𝑥 from false to true
if 𝑥 is false.

We implement a condition-lock as in Algorithm 2. The condition
𝑐 is checked before and after the CAS lock (lines 1 and 3). It is possible
that other workers may update the condition 𝑐 simultaneously. If 𝑐
is changed to false after locking 𝑥 , 𝑥 will be unlocked and then
return false immediately (line 4). Such a conditional Lock can
atomically lock 𝑥 by satisfying 𝑐 and thus can avoid blocking on a
locked 𝑥 that does not satisfy the condition 𝑐 .

4 PARALLEL CORE MAINTENANCE
In this section, based on the Order algorithm, we propose a new
parallel core maintenance algorithm, so-called Parallel-Order,
for both edge insertion and removal.

The main steps for parallel edges insertion are shown in Al-
gorithm 3. Given an undirected graph 𝐺 , the core numbers and
𝑘-order for all vertices are initialized by the BZ algorithm [1] in
linear time. A batch Δ𝐸 of edges will insert into 𝐺 . We split these
edges Δ𝐸 into P parts, Δ𝐸1 . . . Δ𝐸P , where P is the total number
of workers (line 1). Each worker 𝑝 inserts multiple inserted edges
of Δ𝐸𝑝 in parallel with other workers (line 2). One by one, a worker
𝑝 deals with a single edge in InsertEdge𝑝 (line 4). The key issue is
how to implement InsertEdge𝑝 executed by a worker 𝑝 in parallel
with other workers.

Removing edges in parallel is analogous to Algorithm 3, and the
key issue is RemoveEdge𝑝 . Note that insertion and removal cannot
run in parallel, which greatly simplifies the synchronization of the
algorithms.

One benefit of our method is that, unlike the existing parallel
core maintenance methods [13, 14, 30], prepossessing of Δ𝐸𝑝 is not
required so that edges can be inserted or removed on-the-fly.

4.1 Parallel Edge Insertion
Algorithm. The detailed steps of InsertEdge𝑝 are shown in

Algorithm 5. We introduce several new data structures. First, the
min-priority queue 𝑄𝑝 , the queue 𝑅𝑝 , the candidate set𝑉 ∗𝑝 , and the
searching set 𝑉 +𝑝 are all private to each worker 𝑝 , so they cannot
be accessed by other workers and synchronization is not necessary
(lines 3, 7). Second, for each vertex 𝑢 ∈ 𝑉 , we introduce a status 𝑢.𝑠 ,
initialized as 0, and atomically incremented by 1 before and after
the 𝑘-order operation (lines 16 and 30). In other words, when 𝑢.𝑠 is

Algorithm 3: Parallel-InsertEdges(𝐺,O,Δ𝐸)
1 partition Δ𝐸 into Δ𝐸1, . . . ,Δ𝐸P
2 DoInsert1(Δ𝐸1) ∥ · · · ∥ DoInsertP(Δ𝐸P)

3 procedure DoInsert𝑝(Δ𝐸𝑝)
4 for (𝑢, 𝑣) ∈ Δ𝐸𝑝 do InsertEdge𝑝(𝐺,O, (𝑢, 𝑣))

125

Parallel Order-Based Core Maintenance in Dynamic Graphs ICPP 2023, August 07–10, 2023, Salt Lake City, UT, USA

Algorithm 4: Parallel-Order(O, 𝑢, 𝑣)
1 𝑠 ← ∅; 𝑠′ ← ∅; 𝑟 ← ∅
2 do
3 do 𝑠 ← 𝑢.𝑠 ; 𝑠′ ← 𝑣.𝑠 while 𝑠 mod 2 = 1 ∨ 𝑠′ mod 2 = 1
4 𝑟 ← 𝑢 ⪯ 𝑣
5 while 𝑠 ≠ 𝑢.𝑠 ∨ 𝑠′ ≠ 𝑣.𝑠
6 return 𝑟

an odd number, the 𝑘-order of 𝑢 is being maintained. By using such
a status of each vertex, we obtain 𝑣 ∈ 𝑢.post (𝑢 ⪯ 𝑣) or 𝑣 ∈ 𝑢.pre
(𝑣 ⪯ 𝑢) by the parallel Order(𝑢, 𝑣) operation.

As shown in Algorithm 4, when comparing the order of 𝑢 and 𝑣 ,
we ensure that𝑢 and 𝑣 are not updating their 𝑘-order. We repeatedly
acquire 𝑢.𝑠 and 𝑣 .𝑠 as 𝑠 and 𝑠′ until both 𝑠 and 𝑠′ are even numbers
(line 3). After comparing the order of 𝑢 and 𝑣 (line 4), we check if
𝑢.𝑠 and 𝑣 .𝑠 are increased or not (line 5). If that is the case, we redo
the whole process (line 2). Finally, we return the result in line 6.

Given an inserted edge 𝑢 ↦→ 𝑣 where 𝑢 ⪯ 𝑣 , we lock both 𝑢 and 𝑣
together when both are not locked (line 1). We redo the lock of 𝑢
and 𝑣 if they are updated by other workers as 𝑣 ⪯ 𝑢 (line 2). After
locking, 𝐾 is initialized to the smaller core number of 𝑢 and 𝑣 . After
inserting the edge𝑢 ↦→ 𝑣 into the graph𝐺 (line 4), 𝑣 can be unlocked
(line 5). If𝑢.d+out ≤ 𝐾 , we unlock𝑢 and terminate (line 6); otherwise,
we set𝑤 as 𝑢 for propagation (line 7). In the do-while-loop (lines 8 -
13), initially,𝑤 equals 𝑢, which was already locked in line 1 (line 7).
We calculate𝑤.d∗in by counting the number of𝑤.pre located in 𝑉 ∗𝑝
(line 9). If𝑤.d∗in +𝑤.d

+
out > 𝐾 , vertex𝑤 does Forward𝑝 (line 10). If

𝑤.d∗in +𝑤.d
+
out ≤ 𝐾 ∧𝑤.d∗in > 0, vertex𝑤 does Backward𝑝 (line 11).

If 𝑤.d∗in +𝑤.d
+
out ≤ 𝐾 ∧𝑤.d∗in = 0, we skip 𝑤 and unlock 𝑤 since

𝑤 cannot be in 𝑉 + (line 11). Successively, we dequeue a vertex𝑤
from𝑄𝑝 with𝑤.core = 𝐾 and lock𝑤 at the same time (line 12). The
do-while-loop terminates when 𝑄𝑝 is empty (line 13). All vertices
𝑤 ∈ 𝑉 ∗𝑝 have their core numbers increased by 1 and their𝑤.d∗in is
reset to 0 (line 15); also, all𝑤 are removed from O𝐾 and inserted at
the head of O𝐾+1 to maintain the 𝑘-order by using the parallel OM
data structure, where all𝑤.𝑠 are atomically increased by 1 before
and after this process (line 16). Before termination, we unlock all
locked vertices𝑤 (line 17).

The Forward(𝑢) and Backward(𝑤) procedures in Algorithm 5
are almost the same as their sequential version since all vertices
in 𝑉 + are locked. There are a few differences. In Forward𝑝 (𝑢),
for each 𝑣 in 𝑢.post whose core numbers equal to 𝐾 , we add 𝑣
into the priority queue 𝑄𝑝 (line 21); but 𝑣 .d∗in is not maintained by
adding 1 since it will be calculated in line 9 when it is used. In the
Backward𝑝 (𝑤) procedure, 𝑤 is removed from O𝐾 and appended
after pre to maintain the 𝑘-order by using the parallel OM data
structure, where𝑤.𝑠 are atomically increased by 1 before and after
this process (line 30).

Example 4.1. In Figure 1, we show an example of maintaining
the core numbers of vertices in parallel after inserting three edges.
Figure 1(a) shows an example graph constructed as a DAG where
the direction of edges indicates the 𝑘-order. After initialization,
𝑣 has a core number 1 with 𝑘-order O1 and 𝑢1 to 𝑢5 have a core
number 2 with 𝑘-order O2.

Figure 1(b) shows three edges, 𝑒1, 𝑒2 and 𝑒3, being inserted in
parallel by three workers, 𝑝1, 𝑝2, and 𝑝3, respectively. (1) For 𝑒1, the
worker 𝑝1 will first locks 𝑣 and 𝑢2 for inserting the edge. But if 𝑢2
is already locked by 𝑝2, worker 𝑝1 has to wait for 𝑝2 to finish and
unlock 𝑢2. (2) For 𝑒2, worker 𝑝2 first locks 𝑢2 and 𝑢3 for inserting
the edge, after which 𝑢3 is unlocked. Then, 𝑢3, 𝑢4, and 𝑢5 are added
to its priority queue 𝑄2 for propagation. That is, 𝑢3 is locked and
dequeued from 𝑄2 with 𝑢3 .d∗in = 1 (assuming that 𝑝2 locks 𝑢3
before 𝑃3 lock 𝑢3). After propagation, we get that 𝑉 ∗ is empty.
Subsequently, 𝑢4 and 𝑢5 are locked and dequeued from 𝑄2, which
are unlocked and skipped since their d∗in = 0. The 𝑘-order O2 is

Algorithm 5: InsertEdge𝑝 (®𝐺,O, 𝑢 ↦→ 𝑣)

1 Lock 𝑢 and 𝑣 together when both are not locked
2 if 𝑣 ⪯ 𝑢 then Unlock 𝑢 and 𝑣; goto line 1
3 𝑉 ∗𝑝 ,𝑉

+
𝑝 , 𝐾,← ∅, ∅, min(u.core, v.core)

4 insert 𝑢 ↦→ 𝑣 into ®𝐺 with 𝑢.d+out ← 𝑢.d+out + 1
5 Unlock(𝑣)

6 if 𝑢.d+out ≤ 𝐾 then Unlock(u); return
7 𝑄𝑝 , 𝑤 ← a min-priority queue by O,𝑢
8 do
9 𝑤.d∗in ← |{𝑤′ ∈ 𝑤.pre : 𝑤′ ∈ 𝑉 ∗𝑝 } | // calculate d∗in

10 if 𝑤.d∗in + 𝑤.d+out > 𝐾 then Forward𝑝(𝑤)

11 else if 𝑤.d∗in > 0 then Backward𝑝(𝑤) else Unlock(𝑤)
12 𝑤 ← 𝑄𝑝 .dequeue () with 𝑤.core = 𝐾 and Lock(𝑤)

13 while 𝑤 ≠ ∅
14 for 𝑤 ∈ 𝑉 ∗𝑝 do
15 𝑤.core← 𝐾 + 1; 𝑤.d∗in ← 0

// atomically add 𝑤.𝑠

16 ⟨𝑤.𝑠++⟩; Delete(O𝐾 , 𝑤); Insert(O𝐾+1, head,w); ⟨𝑤.𝑠++⟩
17 Unlock all locked vertices

18 procedure Forward𝑝(𝑢)
19 𝑉 ∗𝑝 ← 𝑉 ∗𝑝 ∪ {𝑢};𝑉 +𝑝 ← 𝑉 +𝑝 ∪ {𝑢} // 𝑢 is locked

20 for 𝑣 ∈ 𝑢.𝑝𝑜𝑠𝑡 : 𝑣.core = 𝐾 do
21 if 𝑣 ∉ 𝑄𝑝 then𝑄𝑝 .𝑒𝑛𝑞𝑢𝑒𝑢𝑒 (𝑣)

22 procedure Backward𝑝(𝑤)
23 𝑉 +𝑝 ← 𝑉 +𝑝 ∪ {𝑤}; pre← 𝑤 // 𝑤 is locked

24 𝑅𝑝 ← an empty queue; DoPre𝑝(𝑤,𝑅𝑝)
25 𝑤.d+out ← 𝑤.d+out + 𝑤.d∗in; 𝑤.d∗in ← 0
26 while 𝑅𝑝 ≠ ∅ do
27 𝑢 ← 𝑅𝑝 .dequeue ()
28 𝑉 ∗𝑝 ← 𝑉 ∗𝑝 \ {𝑢}
29 DoPre𝑝(𝑢, 𝑅𝑝); DoPost𝑝(𝑢, 𝑅𝑝)

// atomically add 𝑤.𝑠

30 ⟨𝑤.𝑠++⟩; Delete (O𝐾 ,𝑢); Insert(O𝐾 , pre,𝑢); ⟨𝑤.𝑠++⟩
31 pre← 𝑢; 𝑢.d+out ← 𝑢.d+out +𝑢.d∗in; 𝑢.d∗in ← 0

32 procedure DoPre𝑝(𝑢, 𝑅𝑝)
33 for 𝑣 ∈ 𝑢.pre : 𝑣 ∈ 𝑉 ∗𝑝 do
34 𝑣.d+out ← 𝑣.d+out − 1
35 if 𝑣.d∗in + 𝑣.d+out ≤ 𝐾 ∧ 𝑣 ∉ 𝑅𝑝 then 𝑅𝑝 .𝑒𝑛𝑞𝑢𝑒𝑢𝑒 (𝑣)

36 procedure DoPost𝑝(𝑢, 𝑅𝑝)
37 for 𝑣 ∈ 𝑢.post do
38 if 𝑣 ∈ 𝑉 ∗𝑝 ∧ 𝑣.d∗in > 0 then
39 𝑣.d∗in ← 𝑣.d∗in − 1
40 if 𝑣.d∗in + 𝑣.d+out ≤ 𝐾 ∧ 𝑣 ∉ 𝑅𝑝 then 𝑅𝑝 .𝑒𝑛𝑞𝑢𝑒𝑢𝑒 (𝑣)

126

ICPP 2023, August 07–10, 2023, Salt Lake City, UT, USA Bin Guo and Emil Sekerinski

3

3

1

(b)

2 10

1

3

2

(c)

2 10

2

2

1

(a)

1 10

Figure 1: An example graph maintaining core numbers after insert-
ing edges, 𝑒1, 𝑒2, and 𝑒3. The letters inside the circle are vertices’
IDs and O𝑘 is the 𝑘-order of vertices with core numbers 𝑘 . The
number beside each vertex is its remaining out-degree d+out . The
direction for each edge indicates the 𝑘-order of two vertices, which
leads to a constructed DAG. (a) the initial graph. (b) after inserting
3 edges. (c) the core numbers and 𝑘-orders are updated.

updated to 𝑢1, 𝑢3, 𝑢2, 𝑢4, and 𝑢5. (3) For 𝑒3, the worker 𝑝3 will first
lock 𝑢1 and 𝑢4 for inserting the edge, after which 𝑢4 is unlocked.
Then, 𝑢3, 𝑢4 and 𝑢5 are added to 𝑄3 for propagation. That is, 𝑢3 is
locked and dequeued from 𝑄2 (assuming that 𝑝3 waits for 𝑢3 to be
unlocked by 𝑝2) with 𝑢3 .d∗in = 1, by which 𝑢3 is added to𝑉 ∗ and 𝑢2
is added to 𝑄3 for propagation. Subsequently, 𝑢3, 𝑢2, 𝑢4, and 𝑢5 are
locked and dequeued from 𝑄3 for propagation, which are all added
to 𝑉 ∗ (assuming that 𝑝3 waits for 𝑢2 to be unlocked by 𝑝2).

Figure 1(c) shows the result after inserting edges. We can see all
vertices have their core numbers increased by 1. Orders O2 and O3
are updated accordingly. All vertices’ d+out are updated accordingly.

We can see three vertices, 𝑢3, 𝑢4 and 𝑢5, can be added in 𝑄2 and
𝑄3 at the same time. That is, when 𝑝3 removes 𝑢3 from 𝑄2, it is
possible that 𝑢3 has already been accessed by 𝑝2. In this case, we
have to update 𝑄3 before dequeuing if we find that 𝑢3 is accessed
by 𝑝2, in case the 𝑘-order of 𝑢3 in 𝑄3 is changed by 𝑝2.

Implementation. The min-priority queue𝑄 is used for traversing
the affected vertices in 𝑘-order O. Here, O is implemented by the
parallel OM data structure [11], in which all vertex are assigned
labels to indicate the order. Queue 𝑄 is implemented with min-
heap [5] by comparing the labels maintained by the parallel OM
data structure, which supports enqueue and dequeue in 𝑂 (log |𝑄 |)
time. For a worker 𝑝 , all vertices 𝑣 ∈ 𝑄𝑝 can be locked and reordered
by other workers. To correctly dequeue a vertex that has a minimum
order in 𝑄𝑝 , we devise specific enqueue and dequeue operations:
- When enqueuing𝑤 into 𝑄𝑝 , we recorded𝑤.𝑠 . When dequeuing
𝑣 from 𝑄𝑝 , we first lock 𝑣 and check if 𝑣 .𝑠 has changed or not.
If that is the case, 𝑣 is reordered and the label of 𝑣 is changed
by other workers, so we have to make the heap of 𝑄𝑝 again and
redo the dequeue operation.

- When dequeuing 𝑣 from 𝑄𝑝 , if O𝑘 does not trigger a relabel
operation (including rebalance and split), the locked 𝑣 will always
have amin-label (smallest order inO𝑘), since all the other vertices
must have their order increased when accessed by other workers
(lines 16 and 30 in Algorithm 5).

- Within the enqueue and dequeue operations, if O𝑘 triggers a
relabel operation, the label of 𝑣 ∈ O𝑘 may be decreased. In
this case, we have to make the heap of O𝑘 again and redo such
enqueue and dequeue operations.

Typically, the size of 𝑄𝑝 is small and the relabel operations of O𝑘
are triggered with a low probability. Thus, our enqueue and de-
queue operations remain efficient. For the details of implementation,
please refer to Appendix.

Correctness. Weonly argue the correctness of Algorithm 5 related
to the concurrent part, as the correctness of its sequential version
has been argued in [12]. There are no deadlocks by lock vertices in
order. For each worker 𝑝 , the accessed vertices are synchronized by
locking. When locking 𝑢, the sets 𝑢.post and 𝑢.pre will not change
until 𝑢 is unlocked. Please refer to the arxiv version1 for full proof.

Time and Space Complexities. The best-case running time is
𝑂 (𝑚′ |𝐸+ | log |𝐸+ |/P + |𝐸+ | log |𝐸+ | +𝑚′ |𝑉 ∗ |), and the worst-case
running time is 𝑂 (𝑚′ |𝐸+ | log |𝐸+ |), where 𝑚′ edges are inserted
and 𝐸+ is the largest number of adjacent edges for all vertices in𝑉 +
among each inserted edge. The worst-case is unlikely to happen in
practice. The total space is𝑂 (𝑛 + |𝐸+ |P). Refer to the arxiv version
for full proof.

4.2 Parallel Edge Removal
Algorithm. The detailed steps of RemoveEdge𝑝 are shown in

Algorithm 6. We introduce several new data structures. First, the
queue 𝑅𝑝 is privately used by worker 𝑝 and cannot be accessed
by other workers without synchronization (line 2). Second, each
worker 𝑝 adopts a set𝐴𝑝 to record all the visited vertices𝑤 ′ ∈ 𝑤.adj
to avoid repeatedly revisiting𝑤 ′ ∈ 𝑤.adj again. Third, each vertex
𝑣 ∈ 𝑉 has a status 𝑣 .𝑡 with four possible values:
- 𝑣 .𝑡 = 2 means 𝑣 is ready to be propagated (line 22).
- 𝑣 .𝑡 = 1 means 𝑣 is been propagated by the inner for-loop (lines
11 - 14).

- 𝑣 .𝑡 = 3 means 𝑣 has to be propagated again by the inner for-
loop (lines 11 - 14), as some vertices 𝑣 .adj have core numbers
decreased by other workers.

- 𝑣 .𝑡 = 0 means 𝑣 is just initialized or already propagated (line 33).
Given a removed edge (𝑢, 𝑣), we lock both𝑢 and 𝑣 together when

both are not locked (line 1). After locking, 𝐾 is initialized as the
smaller core number of 𝑢 and 𝑣 (line 2). We execute the procedure
CheckMCD𝑝 for 𝑢 or 𝑣 to make 𝑢.mcd and 𝑣 .mcd non-empty (line
3). We remove the edge (𝑢, 𝑣) safely from the graph 𝐺 (line 4). For
𝑢 or 𝑣 , if their core number is greater or equal to 𝐾 , we execute
the procedure DoMCD𝑝 (lines 5 and 6), by which 𝑢 and 𝑣 may be
added in 𝑅𝑝 for propagation. If 𝑢 or 𝑣 is not in 𝑅𝑝 , we immediately
unlock 𝑢 or 𝑣 (line 7). The while-loop (lines 8 - 16) propagates all
vertices in 𝑅𝑝 . A vertex 𝑤 is removed from 𝑅𝑝 and an empty set
𝐴𝑝 is initialized (line 9). In the inner for-loop (lines 11 - 14), the
adjacent vertices𝑤 ′ ∈ 𝑤.adj are condition-locked with𝑤 ′ .core = 𝐾
(lines 11 and 12), as 𝑤 ′ .core can be decreased from 𝐾 to 𝐾 − 1 by
other workers. For each locked 𝑤 ′ ∈ 𝑤.adj, we first execute the
CheckMCD𝑝 procedure in case 𝑤 ′ .mcd is empty and then execute
the DoMCD𝑝 procedure (line 13). The visited𝑤 ′ are added into𝐴𝑝 to
avoid visiting them repeatedly (line 14). We atomically decrease𝑤.𝑡
by 1 before and after such an inner for-loop since other workers
can access 𝑤.𝑡 in line 32 (lines 10 and 15). After that, if 𝑤.𝑡 > 0,
we have to propagate𝑤 again as other vertices in𝑤.adj have core
numbers decreased from 𝐾 + 1 to 𝐾 by other workers (line 16).

1https://arxiv.org/pdf/2210.14290.pdf

127

https://arxiv.org/pdf/2210.14290.pdf

Parallel Order-Based Core Maintenance in Dynamic Graphs ICPP 2023, August 07–10, 2023, Salt Lake City, UT, USA

The while-loop will not terminate until 𝑅𝑝 becomes empty (line
8). Finally, all vertices in 𝑉 ∗ are appended to O𝐾−1 to maintain the
𝑘-order (line 17). We must not forget to unlock all locked vertices
before termination (line 18).

In procedure DoMCD𝑝 (𝑢), vertex 𝑢 has already been locked by
worker 𝑝 (line 19). We decrease 𝑢.mcd by 1 as 𝑢.mcd cannot be
empty (line 20). If it still has 𝑢.mcd ≥ 𝑢.core, we finally unlock 𝑢
and terminate (line 21 and 25). Otherwise, we first decrease 𝑢.core
by 1 and set 𝑢.𝑡 as 2 together, which has to be an atomic operation
since 𝑣 .𝑡 indicates 𝑣 ’s status for other workers (line 22). Then, we
add 𝑢 to 𝑅𝑝 for propagation (line 23); also, we set 𝑢.mcd to empty
since the value is out of date, which can be calculated later if needed
(line 24).

In the procedure CheckMCD(𝑢), we recalculate𝑢.mcd if it is empty
(line 27). We initially set temporarilymcd as 0 (line 28), and then we
count 𝑢.mcd (lines 29 - 33). Here, 𝑢.mcd is the number of 𝑣 ∈ 𝑢.adj
for two cases: 1) 𝑣 .core ≥ 𝑢.core, or 2) 𝑣 .core = 𝑢.core−1 and 𝑣 .𝑡 > 0
(line 29); if either one is satisfied,we add the temporalmcd by 1 (line
30). When 𝑣 .core = 𝐾 − 1, it is possible that 𝑣 .𝑡 is been updated by
other workers. If 𝑣 .𝑡 equals 1, we know that 𝑣 is been propagating. In
this case, we have to set 𝑣 .𝑠 from 1 to 3 by the atomic primitive CAS,
which leads to 𝑣 redo the propagation in line 16 by other workers
(line 32). Here, we skip executing CAS when 𝑣 = 𝑤 (line 32) to avoid
many useless redo processes in line 13. If 𝑣 .𝑡 is reduced to 0, the
propagation of 𝑣 is finished so that 𝑣 cannot be counted as 𝑢.mcd
and the temporary mcd is off by 1 (line 33). Finally, we set 𝑢.mcd
as the temporary mcd and terminate (line 34). The big advantage is
that we calculate 𝑢.mcd without locking all neighbors 𝑢.adj of 𝑣 .

Example 4.2. In Figure 2, we show an example of maintaining the
core numbers of vertices in parallel when removing three edges.
Figure 2(a) shows that 𝑣 has a core number of 2 with 𝑘-order O2
and all 𝑢1 to 𝑢5 have core numbers of 3 with 𝑘-order O3. We can
see that for all vertices the core numbers are less or equal to mcd.

Figure 2(b) shows three edges, 𝑒1, 𝑒2 and 𝑒3, being removed in
parallel by three workers, 𝑝1, 𝑝2, and 𝑝3, respectively. (1) For 𝑒1,
worker 𝑝1 will lock 𝑣 and 𝑢2 together for removing the edge. But 𝑢2
is already locked by 𝑝2, so 𝑝1 has to wait for 𝑝2 to unlock 𝑢2. Then,
𝑢2 is unlocked without changing 𝑢2 .mcd, and the core number of 𝑣
is off by 1 added to 𝑅1 for propagation. Since only one 𝑢3 ∈ 𝑣 .adj
has a core number greater than 𝑣 , the propagation of 𝑣 terminates.
Finally, 𝑣 is unlocked. (2) For 𝑒2, the worker 𝑝2 first locks 𝑢2 and
𝑢3 together for removing the edge. Then, both 𝑢2 .core and 𝑢3 .core
are off by 1, and 𝑢2 and 𝑢3 are added to 𝑅2 for propagation. For
propagating𝑢2, we traverse all𝑢2 .adj; the vertex𝑢4 is locked by the

3

2

2

2

(b)

1 24

3

3

(a)

2 4 3

2

2

2

(c)

1 24

Figure 2: An example graph maintains the core numbers after
removing 3 edges, 𝑒1, 𝑒2, and 𝑒3. The letters inside the cycles are
vertices’ IDs and theO𝑘 is the 𝑘-order of vertices with core numbers
𝑘 . The beside numbers are correspondingmcd. (a) an initial example
graph. (b) remove three edges. (c) the core numbers and O𝑘 update.

Algorithm 6: RemoveEdge𝑝 (𝐺,O, (𝑢, 𝑣))
1 Lock 𝑢 and 𝑣 together when both are not locked
2 𝐾,𝑅𝑝 ,𝑉

∗
𝑝 ← Min(𝑢.core, 𝑣.core), an empty queue, ∅

3 CheckMCD𝑝(𝑢,∅); CheckMCD𝑝(𝑣,∅)
4 remove (𝑢, 𝑣) from𝐺

5 if 𝑣.core ≥ 𝐾 then DoMCD𝑝(𝑢)

6 if 𝑢.core ≥ 𝐾 then DoMCD𝑝(𝑣)

7 Unlock 𝑢 if 𝑢 ∉ 𝑅𝑝 ; Unlock 𝑣 if 𝑣 ∉ 𝑅𝑝
8 while 𝑅𝑝 ≠ ∅ do
9 𝑤,𝐴𝑝 ← 𝑅𝑝 .dequeue (), ∅

10 ⟨𝑤.𝑡 ← 𝑤.𝑡 − 1⟩ // atomically sub

11 for 𝑤′ ∈ 𝑤.adj : 𝑤′ ∉ 𝐴𝑝 ∧ 𝑤′ .core = 𝐾 do
12 if Lock(𝑤′) with 𝑤′ .core = 𝐾 then
13 CheckMCD𝑝(𝑤

′, 𝑤); DoMCD𝑝(𝑤′)
14 𝐴𝑝 ← 𝐴𝑝 ∪ {𝑤′ }
15 ⟨𝑤.𝑡 ← 𝑤.𝑡 − 1⟩ // atomically sub

16 if 𝑤.𝑡 > 0 then goto line 10
17 Append all 𝑢 ∈ 𝑉 ∗𝑝 at the tail of O𝐾−1 in 𝑘-order
18 Unlock all locked vertices

19 procedure DoMCD𝑝(𝑢)
20 𝑢.mcd ← 𝑢.mcd − 1 // 𝑢 is locked

21 if 𝑢.mcd < 𝐾 then
22 ⟨𝑢.core← 𝐾 − 1; 𝑢.𝑡 = 2⟩ // atomic operation

23 𝑅𝑝 .enqueue (𝑢) ; 𝑢.mcd ← ∅
24 𝑉 ∗𝑝 ← 𝑉 ∗𝑝 ∪ {𝑢}; Delete(O,𝑢)
25 else Unlock(𝑢)

26 procedure CheckMCD𝑝(𝑢, 𝑤)
27 if 𝑢.mcd ≠ ∅ then return
28 mcd ← 0
29 for 𝑣 ∈ 𝑢.adj : 𝑣.core ≥ 𝐾 ∨ (𝑣.core = 𝐾 − 1 ∧ 𝑣.𝑡 > 0) do
30 mcd ← mcd + 1
31 if 𝑣.core = 𝐾 − 1 then
32 if 𝑣 ≠ 𝑤 ∧ 𝑣.𝑡 = 1 then CAS(𝑣.𝑡, 1, 3)
33 if 𝑣.𝑡 = 0 then mcd ← mcd − 1
34 𝑢.mcd ← mcd

worker 𝑝3. At the same time, 𝑢4 .core is decreased from 2 to 1 and
𝑝1 will skip locking 𝑢4 since the condition is not satisfied for the
conditional lock. Vertex 𝑢5 is locked by 𝑝2 and has 𝑢5 .mcd off by 1.
Similarly, for propagating 𝑢3, we traverse all 𝑢3 .adj by skipping 𝑢1
and decreasing 𝑢5 .mcd. Now, we have 𝑢5 .mcd = 2 < 𝑢5 .core = 3,
so 𝑢5 .core is off by 1. Finally, we unlock 𝑢2, 𝑢3, and 𝑢5; all their core
numbers are 2 now. (3) For 𝑒3, worker 𝑝3 will first lock 𝑢1 and 𝑢4
together for removing the edge. Then both 𝑢1 .core and 𝑢4 .core are
off by 1. Vertices 𝑢1 and 𝑢4 are added to 𝑅3 for propagation. The
propagation will stop since the neighbors of 𝑢1 and 𝑢4 (𝑢3, 𝑢2, and
𝑢5) are locked by 𝑝2 and have decreased core numbers. Finally, we
unlock 𝑢1 and 𝑢4; all their core numbers are 2 now. We can see 𝑝2
and 𝑝3 execute without blocking each other, and only vertices in
𝑉 ∗ are locked.

Figure 2(c) shows the result after removing edges. We can see
that all vertices have their core numbers decreased by 1. Orders O1
and O2 are updated accordingly. Also, all vertices’mcd are updated
accordingly.

128

ICPP 2023, August 07–10, 2023, Salt Lake City, UT, USA Bin Guo and Emil Sekerinski

The above example assumes that themcd of all vertices is initially
generated. Suppose 𝑢3 .mcd = ∅ before removing 𝑒2, we have to
calculate 𝑢3 .mcd by CheckMCD. At this time, 𝑢2 and 𝑢5 are counted
into 𝑢3 .mcd since they are not locked by 𝑝3, but 𝑢1 is locked by 𝑝3
for propagation. The key issue is whether 𝑢1 is counted as 𝑢3 .mcd
or not. There are two cases. (1) If 𝑢1 .core = 3, we increment 𝑢3 .mcd
by 1. (2) If 𝑢1 .core is decreased to 2 and 𝑢1 is propagating, we also
increment 𝑢3 .mcd by 1. Since it is possible that 𝑢1 has already
propagated 𝑢3, we force 𝑢1 to redo the propagation by setting 𝑢1 .𝑡
from 1 to 3 atomically.

Correctness. There have no deadlocks because 1) both 𝑢 and
𝑣 are locked together for a removed edge (𝑢, 𝑣) (line 1), and 2)
for all vertices 𝑤 ∈ 𝑅𝑝 , we have 𝑤 locked by the worker 𝑝 and
𝑤.core = 𝐾 − 1 and also worker 𝑝 will lock all 𝑤 ′ ∈ 𝑤.adj with
𝑤.core = 𝐾 for propagation. For all vertices 𝑣 , their 𝑣 .𝑚𝑐𝑑 are
correctly maintained without locking the neighbors 𝑣 .adj. Please
refer to the arxiv version for full proof.

Time and Space Complexities. The best-case running time is
𝑂 (𝑚′ |𝐸∗ |/P + |𝐸∗ | +𝑚′ |𝑉 ∗ |) and the worst-case running time is
𝑂 (𝑚′ |𝐸∗ |), where𝑚′ edges are removed and 𝐸∗ is the largest num-
ber of adjacent edges for all vertices in 𝑉 ∗ among each removed
edge. The worst-case is unlikely to happen in practice. The total
space is𝑂 (𝑛+ |𝐸∗ |P). Please refer to the arxiv version for full proof.

5 EXPERIMENTS
In this section, we experimentally compare the following core main-
tenance approaches:
- The Join Edge Set based parallel edge insertion algorithm (JEI
for short) and removal algorithm (JER for short) [13]

- TheMatching Edge Set based parallel edge insertion (MI for short)
and removal algorithm (MR for short) [14]

- Our parallel edge insertion algorithm (OurI for short) and re-
moval algorithm (OurR for short)

- As baselines, the sequential Simplified-Order edge insertion
algorithm (OI for short) and removal algorithm (OR for short) [12]

- As baselines, the sequential Traveral edge insertion algorithm
(TI for short) and removal algorithm (TR for short) [27]

The source code is available on GitHub2.
The experiments are performed on a server with an AMD Ryzen

Threadripper 3990X (64 cores 2.9 GHz, 128 hyperthreads, 256 MB of
L3 Cache) and 256 GB of main memory. Each CPU core corresponds
to a worker. The server runs Ubuntu Linux (22.04) operating system.
All tested algorithms are implemented in C++ and compiled with
g++ version 11.2.0 with the -O3 option. OpenMP3 version 4.5 is
used as the threading library. We perform every experiment at least
50 times and calculate their means with 95% confidence intervals.

5.1 Tested Graphs
We evaluate the performance of different methods over a variety of
real-world and synthetic graphs shown in Table 1. For simplicity,
directed graphs are converted to undirected ones; all of the self-
loops and repeated edges are removed. That is, a vertex cannot
connect to itself, and each pair of vertices can connect with at most

2https://github.com/Itisben/Parallel-CoreMaint.git
3https://www.openmp.org/

Graph 𝑛 = |𝑉 | 𝑚 = |𝐸 | AvgDeg Max 𝑘
livej 4,847,571 68,993,773 14.23 372
patent 6,009,555 16,518,948 2.75 64
wikitalk 2,394,385 5,021,410 2.10 131
roadNet-CA 1,971,281 5,533,214 2.81 3
dbpedia 3,966,925 13,820,853 3.48 20
baidu 2,141,301 17,794,839 8.31 78
pokec 1,632,804 30,622,564 18.75 47
wiki-talk-en 2,987,536 24,981,163 8.36 210
wiki-links-en 5,710,993 130,160,392 22.79 821
ER 1,000,000 8,000,000 8.00 11
BA 1,000,000 8,000,000 8.00 8
RMAT 1,000,000 8,000,000 8.00 237
DBLP 1,824,701 29,487,744 16.17 286
Flickr 2,302,926 33,140,017 14.41 600
StackOverflow 2,601,977 63,497,050 24.41 198
wiki-edits-sh 4,589,850 40,578,944 8.84 47

Table 1: Tested real and synthetic graphs, where the “AvgDeg” is the
average degree and “Max 𝑘” is the maximal core numbers among all
vertices.

one edge. The livej, patent, wiki-talk, and roadNet-CA graphs are
obtained from SNAP4. The dbpedia, baidu, pokec and wiki-talk-
en wiki-links-en graphs are collected from the KONECT5 project.
The ER, BA, and RMAT graphs are synthetic graphs generated by
the SNAP6 system using Erdös-Rényi, Barabasi-Albert, and the
R-MAT graph models, respectively; the average degree is fixed
to 8 by choosing 1,000,000 vertices and 8,000,000 edges. All the
above twelve graphs are static graphs. We also select four real
temporal graphs, DBLP, Flickr, StackOverflow, and wiki-edits-sh
from KONECT; each edge has a timestamp recording the time of
this edge inserted into the graph. We select 100,000 edges within
the latest continuous time range for insertion and removal.

In Table 1, we can see all graphs have millions of edges. Their
average degrees range from 2.1 to 24.4, and their maximal core
numbers range from 3 to 821. In Figure 3, we can see that the
core numbers of vertices are not uniformly distributed in all tested
graphs. That is, a great portion of vertices have small core numbers,
and few have large core numbers. For example, wikitalk has 1.7
million vertices with a core number of 1; all vertices in roadNet-
CA have four core numbers from 0 to 3; all vertices in BA have a
single core number as 8. For JEI, JER, MI and MR, such core number
distribution is an important property since the vertices with the
same core number can only be processed by a single worker at the
same time, while OurI and OurR do not have this limitation.

5.2 Running Time Evaluation
In this experiment, we exponentially increase the number of work-
ers from 1 to 64 to evaluate the real running time over graphs in
Table 1. For the twelve static graphs, we randomly sample 100,000
edges. For the four temporal graphs, we select the latest continuous
period of 100,000 edges. These edges are first removed and then
inserted. The accumulated running times are measured.

The plots in Figure 4 depict the performance of four compared
algorithms, where the running times above 3600 seconds are not
depicted. Comparing three parallel methods, the first look reveals
that OurI and OurR always have the best performance and MI and
MR always have the worst performance, respectively. Compared

4http://snap.stanford.edu/data/index.html
5http://konect.cc/networks/
6http://snap.stanford.edu/snappy/doc/reference/generators.html

129

https://github.com/Itisben/Parallel-CoreMaint.git
https://www.openmp.org/
http://snap.stanford.edu/data/index.html
http://konect.cc/networks/
http://snap.stanford.edu/snappy/doc/reference/generators.html

Parallel Order-Based Core Maintenance in Dynamic Graphs ICPP 2023, August 07–10, 2023, Salt Lake City, UT, USA

with the two baseline methods, we find that OI and OR are much
more efficient than TI and TR, respectively. Specifically, we make
several observations:
- By using one worker, Our and OurR have the same running time
as the baselines of OI and OR, respectively. This is because OurI
and OurR are based on OI and OR and have the same work com-
plexities, respectively.

- By using one worker, JEI and JER are always faster than TI and
TR, respectively. This is because although JEI and JER are based
on TI and TR, a batch of insertions or removals are processed
together and thus repeated computations can be avoided. Also,
MI and MR have the same trend.

- By using one worker, all algorithms are reduced to sequential,
and OurI performs much faster than JEI. This is because for
edge insertion, OurI is based on the OI, while JEI is based on TI.
OI is much faster than TI. Also, MI and MR have the same trend.

- By using one worker, OurR does not always perform better than
JER. This is because our method uses arrays to store edges, which
can save space, while the join-edge-set-based method uses binary
search trees to store edges. When deleting an edge (𝑢, 𝑣), OurR
has to traverse all vertices of𝑢.adj and 𝑣 .adj, while JER only need
to traverse log |𝑢.adj | and log |𝑣 .adj | vertices. That means OurR
costs more running time than JER for deleting an edge from the
graph.

- By using multiple workers, OurI and OurR can always achieve
better speedups compared with other parallel methods, but JEI
and JER have no speedups over some graphs. This is because
JEI and JER have limited parallelism, as affected vertices with
different core numbers cannot perform in parallel, while OurI
and OurR do not have such a limitation. Also, MI and MR have the
same trend.

- By using multiple workers, the running time of OurI and OurR
may begin to increase when using more than 8 or 16 workers, e.g.
livej, patent, and dbpedia. This is because of the contention on
shared data structures with multiple workers, and more workers
may lead to higher contention. In addition, for JEI and JER, when
the core numbers of vertices in graphs are not well distributed,
some workers are wasted, which results in extra overheads.
The numbers of locked vertices evaluation, the speedup evalua-

tion, the scalability evaluation, and the stability evaluation are in
the arxiv version.

0 100 200 300 400 500 600 700 800
Core Numbers

100

101

102

103

104

105

106

Nu
m

be
r o

f V
er

tic
es

Figure 3: The vertices’ core number distributions, where the x-
axis is core numbers and the y-axis is the number of vertices
with the same core number. It shows the trend for all graphs
and thus the legend is omitted.

6 CONCLUSIONS AND FUTUREWORK
We present new parallel core maintenance algorithms to handle a
batch of inserted or removed edges based on the Order algorithm.
A set of vertices𝑉 + are traversed. We use locks for synchronization.
Only the vertices in 𝑉 + are locked and all their associated edges
are not necessarily locked, which leads to high parallelism.

The proposed parallel methodology can be applied to other
graphs, e.g. weighted graphs and probability graphs. It can also be
applied to other graph algorithms, e.g. maintaining the 𝑘-truss in
dynamic graphs. Additionally, the maintenance of the hierarchi-
cal 𝑘-core involves maintaining the connections among different
𝑘-cores in the hierarchy, which can benefit from our result.

REFERENCES
[1] Vladimir Batagelj and Matjaz Zaversnik. 2003. An𝑂 (𝑚) Algorithm for Cores

Decomposition of Networks. CoRR cs.DS/0310049 (2003). http://arxiv.org/abs/
cs/0310049

[2] Michael A Bender, Richard Cole, Erik D Demaine, Martin Farach-Colton, and
Jack Zito. 2002. Two simplified algorithms for maintaining order in a list. In
European Symposium on Algorithms. Springer, 152–164.

[3] Kate Burleson-Lesser, FlavianoMorone, Maria S Tomassone, andHernán AMakse.
2020. 𝑘-core robustness in ecological and financial networks. Scientific reports
10, 1 (2020), 1–14.

[4] James Cheng, Yiping Ke, Shumo Chu, and M Tamer Özsu. 2011. Efficient core
decomposition in massive networks. In 2011 IEEE 27th International Conference
on Data Engineering. IEEE, 51–62.

[5] Thomas H Cormen, Charles E Leiserson, Ronald L Rivest, and Clifford Stein. 2022.
Introduction to algorithms. MIT press.

[6] Naga Shailaja Dasari, Ranjan Desh, and Mohammad Zubair. 2014. ParK: An
efficient algorithm for 𝑘-core decomposition on multicore processors. In 2014
IEEE International Conference on Big Data (Big Data). IEEE, 9–16.

[7] Paul Dietz and Daniel Sleator. 1987. Two algorithms for maintaining order in a list.
In Proceedings of the nineteenth annual ACM symposium on Theory of computing.
365–372.

[8] Rodrigo Dorantes-Gilardi, Diana García-Cortés, Enrique Hernández-Lemus, and
Jesús Espinal-Enríquez. 2021. 𝑘-Core genes underpin structural features of breast
cancer. Scientific Reports 11, 1 (2021), 1–17.

[9] Kasimir Gabert, Ali Pinar, and Ümit V Çatalyürek. 2021. Shared-Memory Scal-
able 𝑘-core Maintenance on Dynamic Graphs and Hypergraphs. In 2021 IEEE
International Parallel and Distributed Processing Symposium Workshops (IPDPSW).
IEEE, 998–1007.

[10] Pengqun Gao, Jing Huang, and Yejun Xu. 2020. A 𝑘-core decomposition-based
opinion leaders identifying method and clustering-based consensus model for
large-scale group decision making. Computers & Industrial Engineering 150 (2020),
106842.

[11] Bin Guo and Emil Sekerinski. 2022. New Parallel Order Maintenance Data
Structure. arXiv preprint arXiv:2208.07800 (2022).

[12] Bin Guo and Emil Sekerinski. 2022. Simplified Algorithms for Order-Based Core
Maintenance. arXiv preprint arXiv:2201.07103 (2022).

[13] Qiang-Sheng Hua, Yuliang Shi, Dongxiao Yu, Hai Jin, Jiguo Yu, Zhipen Cai,
Xiuzhen Cheng, and Hanhua Chen. 2019. Faster parallel core maintenance
algorithms in dynamic graphs. IEEE Transactions on Parallel and Distributed
Systems 31, 6 (2019), 1287–1300.

[14] Hai Jin, Na Wang, Dongxiao Yu, Qiang Sheng Hua, Xuanhua Shi, and Xia Xie.
2018. Core Maintenance in Dynamic Graphs: A Parallel Approach Based on
Matching. IEEE Transactions on Parallel and Distributed Systems 29, 11 (nov 2018),
2416–2428. https://doi.org/10.1109/TPDS.2018.2835441 arXiv:1703.03900

[15] Humayun Kabir and Kamesh Madduri. 2017. Parallel 𝑘-core decomposition on
multicore platforms. In 2017 IEEE International Parallel and Distributed Processing
Symposium Workshops (IPDPSW). IEEE, 1482–1491.

[16] Wissam Khaouid, Marina Barsky, Venkatesh Srinivasan, and Alex Thomo. 2015.
𝑘-core decomposition of large networks on a single PC. Proceedings of the VLDB
Endowment 9, 1 (2015), 13–23.

[17] Yi-Xiu Kong, Gui-Yuan Shi, Rui-Jie Wu, and Yi-Cheng Zhang. 2019. 𝑘-core:
Theories and applications. Physics Reports 832 (2019), 1–32. https://doi.org/10.
1016/j.physrep.2019.10.004

[18] Rong-Hua Li, Jeffrey Xu Yu, and Rui Mao. 2013. Efficient core maintenance in
large dynamic graphs. IEEE Transactions on Knowledge and Data Engineering 26,
10 (2013), 2453–2465.

[19] Zhe Lin, Fan Zhang, Xuemin Lin, Wenjie Zhang, and Zhihong Tian. 2021. Hi-
erarchical core maintenance on large dynamic graphs. Proceedings of the VLDB
Endowment 14, 5 (2021), 757–770.

130

http://arxiv.org/abs/cs/0310049
http://arxiv.org/abs/cs/0310049
https://doi.org/10.1109/TPDS.2018.2835441
https://arxiv.org/abs/1703.03900
https://doi.org/10.1016/j.physrep.2019.10.004
https://doi.org/10.1016/j.physrep.2019.10.004

ICPP 2023, August 07–10, 2023, Salt Lake City, UT, USA Bin Guo and Emil Sekerinski

1 2 4 8 16 32 64

102

103

104

livej

1 2 4 8 16 32 64

102

103

104

patent

1 2 4 8 16 32 64

103

104
wikitalk

1 2 4 8 16 32 64

102

103

104

roadNet-CA

1 2 4 8 16 32 64
102

103

104

105

dbpedia

1 2 4 8 16 32 64

102

103

104

baidu

1 2 4 8 16 32 64

102

103

104

105

106

pokec

1 2 4 8 16 32 64

103

104

wiki-talk-en

1 2 4 8 16 32 64

103

104

wiki-links-en

1 2 4 8 16 32 64

102

103

104

105
ER

1 2 4 8 16 32 64

102

103

104

105

106
BA

1 2 4 8 16 32 64

103

104

RMAT

1 2 4 8 16 32 64

102

103

104

DBLP

1 2 4 8 16 32 64

102

103

104

105

flickr

1 2 4 8 16 32 64

103

104

105

StackOverflow

1 2 4 8 16 32 64

103

2 × 103
wiki-edits-sh

OurI OurR JEI JER MI MR OI OR TI TR

Figure 4: The real running time by varying the number of workers. The x-axis is the number of workers and the y-axis is
running time (millisecond).

[20] Bin Liu and Feiteng Zhang. 2020. Incremental Algorithms of the Core Main-
tenance Problem on Edge-Weighted Graphs. IEEE Access PP (04 2020), 1–1.
https://doi.org/10.1109/ACCESS.2020.2985327

[21] Quanquan C Liu, Jessica Shi, Shangdi Yu, Laxman Dhulipala, and Julian Shun.
2021. Parallel Batch-Dynamic Algorithms for 𝑘-Core Decomposition and Related
Graph Problems. In Proceedings of the 34th ACM Symposium on Parallelism in
Algorithms and Architectures (SPAA ’22) (2021).

[22] Fragkiskos D Malliaros, Christos Giatsidis, Apostolos N Papadopoulos, and
Michalis Vazirgiannis. 2020. The core decomposition of networks: Theory,
algorithms and applications. The VLDB Journal 29, 1 (2020), 61–92. https:
//doi.org/10.1007/s00778-019-00587-4

[23] Daniele Miorandi and Francesco De Pellegrini. 2010. K-shell decomposition for
dynamic complex networks. In 8th International Symposium on Modeling and
Optimization in Mobile, Ad Hoc, and Wireless Networks. IEEE, 488–496.

[24] Alberto Montresor, Francesco De Pellegrini, and Daniele Miorandi. 2012. Dis-
tributed 𝑘-core decomposition. IEEE Transactions on parallel and distributed
systems 24, 2 (2012), 288–300.

[25] Sen Pei, Lev Muchnik, José S Andrade Jr, Zhiming Zheng, and Hernán A Makse.
2014. Searching for superspreaders of information in real-world social media.
Scientific reports 4 (2014), 5547.

[26] Ahmet Erdem Saríyüce, Buğra Gedik, Gabriela Jacques-Silva, Kun-Lung Wu,
and Ümit V Çatalyürek. 2013. Streaming algorithms for 𝑘-core decomposition.
Proceedings of the VLDB Endowment 6, 6 (2013), 433–444.

[27] Ahmet Erdem Sarıyüce, Buğra Gedik, Gabriela Jacques-Silva, Kun-Lung Wu, and
Ümit V Çatalyürek. 2016. Incremental 𝑘-core decomposition: algorithms and
evaluation. The VLDB Journal 25, 3 (2016), 425–447.

[28] Bintao Sun, T-HHubert Chan, andMauro Sozio. 2020. Fully dynamic approximate
𝑘-core decomposition in hypergraphs. ACM Transactions on Knowledge Discovery
from Data (TKDD) 14, 4 (2020), 1–21.

[29] Robert Utterback, Kunal Agrawal, Jeremy T Fineman, and I-Ting Angelina Lee.
2016. Provably good and practically efficient parallel race detection for fork-join
programs. In Proceedings of the 28th ACM Symposium on Parallelism in Algorithms
and Architectures. 83–94.

[30] Na Wang, Dongxiao Yu, Hai Jin, Chen Qian, Xia Xie, and Qiang-Sheng Hua.
2017. Parallel algorithm for core maintenance in dynamic graphs. In 2017 IEEE
37th International Conference on Distributed Computing Systems (ICDCS). IEEE,
2366–2371.

[31] Ping Wang, Xingdong Deng, Yang Liu, Liang Guo, Jun Zhu, Lin Fu, Yakun Xie,
Weilian Li, and Jianbo Lai. 2022. A Knowledge Discovery Method for Landslide
Monitoring Based on 𝑘-core Decomposition and the Louvain Algorithm. ISPRS
International Journal of Geo-Information 11, 4 (2022), 217.

[32] DongWen, Lu Qin, Ying Zhang, Xuemin Lin, and Jeffrey Xu Yu. 2016. I/O efficient
core graph decomposition at web scale. In 2016 IEEE 32nd International Conference
on Data Engineering (ICDE). IEEE, 133–144.

[33] Tongfeng Weng, Xu Zhou, Kenli Li, Peng Peng, and Keqin Li. 2021. Efficient
distributed approaches to core maintenance on large dynamic graphs. IEEE
Transactions on Parallel and Distributed Systems 33, 1 (2021), 129–143.

[34] Huanhuan Wu, James Cheng, Yi Lu, Yiping Ke, Yuzhen Huang, Da Yan, and
Hejun Wu. 2015. Core decomposition in large temporal graphs. In 2015 IEEE
International Conference on Big Data (Big Data). IEEE, 649–658.

[35] Michael Yu, Dong Wen, Lu Qin, Ying Zhang, Wenjie Zhang, and Xuemin Lin.
2021. On querying historical 𝑘-cores. Proceedings of the VLDB Endowment 14, 11
(2021), 2033–2045.

[36] Feiteng Zhang, Bin Liu, and Qizhi Fang. 2020. Core Decomposition, Maintenance
and Applications. In Complexity and Approximation. Springer, 205–218.

[37] Yikai Zhang, Jeffrey Xu Yu, Ying Zhang, and Lu Qin. 2017. A fast order-based
approach for core maintenance. In Proceedings - International Conference on Data
Engineering. 337–348. https://doi.org/10.1109/ICDE.2017.93 arXiv:1606.00200

[38] Wei Zhou, Hong Huang, Qiang-Sheng Hua, Dongxiao Yu, Hai Jin, and Xiaoming
Fu. 2021. Core decomposition and maintenance in weighted graph. World Wide
Web 24, 2 (2021), 541–561.

131

https://doi.org/10.1109/ACCESS.2020.2985327
https://doi.org/10.1007/s00778-019-00587-4
https://doi.org/10.1007/s00778-019-00587-4
https://doi.org/10.1109/ICDE.2017.93
https://arxiv.org/abs/1606.00200

	Abstract
	1 Introduction
	2 Related Work
	3 Preliminaries
	3.1 The Order-Based Core Maintenance
	3.2 Order Maintenance Data Structure
	3.3 Atomic Primitive and Lock

	4 Parallel Core Maintenance
	4.1 Parallel Edge Insertion
	4.2 Parallel Edge Removal

	5 Experiments
	5.1 Tested Graphs
	5.2 Running Time Evaluation

	6 Conclusions and Future Work
	References

