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Motivation

* Graphs are important data structures used
IN many applications:
* Social Networks: Facebook, Twitter
* Knowledge Network: DBpedia
* Biological Networks and Road Network

* The data graphs are growing larger and
larger:
* Facebook has 2.9 billion active users

* Dbpedia has 6.6 million entities and 13
billion pieces of information

Visualizations of Social Networks show
the employee interactions [1]




Graph Analytics »

* Large Data graphs require data >ﬂeO4j gQit_ Server

analytics
* Graph databases:

* Neo4j

* Microsoft SQL Server =

* Amazon Neptune A,\[\M
* Graph algorithms: 4

..........................

* Strongly Connected Components,
* Minimum Spanning Forest

* Shortest Path Distance

* k-Core

Tos




k-Core Decomposition

* [t Is to find the largest
subgraph, in which each node
has at least k neighbors in the
iInduced subgraph

* The core number is the largest
value of k

core number 1

. core number 2

core number 3



Applications In
Soclal Networks

Social Networks, e.g.
Facebook and Twitter

influence

Vertices individuals

Edges relations

* The core numbers of vertices
can predict the average
Influence of spreading [1]

* For vertices, larger core Ks core number
numbers and larger indgrees | .
: : . : Use core numbers to predicts the influence
Indicate h'gher influence of spreading in social networks [1]

[1] Kong, Yi-Xiu, et al. "k-core: Theories and applications.” Physics Reports 832 (2019): 1-32.



Applications on Analyzing Real
Internet networks

10* 4 .
Real Internet Networks :
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* The sizes of k-cores change £ A o e tcore ]
with time S I N e
: . : —y— --v-- 6-core |
* The size of the k-core with O N e Sk <
a larger k was basically L S

unchanged [1] From e 201t Dec. 2008 s ments el

[1] Kong, Yi-Xiu, et al. "k-core: Theories and applications.” Physics Reports 832 (2019): 1-32.



Applications In s cor
ECONOMICS el

B
Stock Networks i W | -
Vertices Stocks '
Edges Connections Legend
@® Utilities
@ Telecommunications
. Materials
* The max core 1s ® imotech
dominated by the ® Hesith cre

Finance in 2003 [2] o e

@® Consumer staples
o Th e FI na n Ce h aS h u g e @ Consumer discretionary
effects

[2] Burleson-Lesser, Kate, et al. "K-core robustness in ecological and financial networks.”
Scientific reports 10.1 (2020): 1-14. -



Dynamic Graphs

* In practice, all above graphs
can be dynamic e,

* Dynamic graphs change with o
new edges inserted or old
edges removed, e.g. temporal
graphs

* The core numbers have to be

U p d ate d {-75-76 edges:20:gwesp.fixed.0:19

A temporal graph with time-evolving edges [3]. Each
edge has a time stamp.

[3] Lotito, Quintino Francesco, and Alberto Montresor. "Efficient Algorithms to Mine Maximal Sp
an-Trusses From Temporal Graphs.” arXiv preprint arXiv:2009.01928 (2020). 8



k-Core Maintenance

* Maintain the core numbers In
dynamic graphs when inserting
or removing one edge.

* |dentify two set: V¥ and V™

V™ | All vertices with core number
changed
V| All searched vertices V= (a) @ corenumberl
V* C V+ v+ = {a, b c d} . core number 2

. core number 3



Sequential k-Core Maintenance Algorithms

Insert or remove 100,000 edges

Insert (Second) Remove (Second)
Dataset Orderlnsert | Trav-2 | Trav-3 | Trav-4 | Trav-5 | Trav-6 OrderRemoval | Trav-2 | Trav-3 | Trav-4 | Trav-5 | Trav-6
Facebook 0.16 3.52 4.07 5.91 10.52 16.95 0.10 0.50 1.63 4.14 9.70 17597
Youtube 0.26 2.51 2.88 4.01 6.13 9.71 0.28 0.61 1.42 3.19 6.28 11.32
DBLP 0.16 1.80 1.20 2.31 6.32 17.65 0.11 0.21 0.61 1.88 5.49 15.78
Patents 0.88 | 2,944.14 | 1,805.98 | 1,173.20 845.93 810.00 0.38 0.92 4.22 18.57 75.06 276.37 |
Orkut 1.14 954.36 793.82 780.69 996.43 | 1,576.63 0.71 7.75 36.80 | 136.78 | 428.85 | 1,089.38
LiveJournal 0.53 149.56 90.93 76.57 125.29 285.50 0.33 1.66 6.59 24.56 86.10 233.92
Gowalla 0.18 1.04 1.37 271 3.78 6.38 0.14 0.35 0.84 1.82 3.45 6.22
CA 0.52 15.14 4.20 2.08 1.37 .1 0.16 0.08 0.13 0.19 0.26 0.33
Pokec 0.77 | 1,726.04 | 1,603.80 | 1,650.37 | 1,876.48 | 2,338.78 0.32 4.86 53.13 | 259.93 | 756.40 | 1,652.88
BerkStan 0.37 6.37 7.29 9.37 13.14 16.19 0.52 2.55 5.04 8.33 12.45 17.34
Google 0.37 1.01 1.25 2.44 4.81 9.27 0.25 0.46 0.96 2.08 4.32 8.75

———=

* The Order algorithm is much faster than the Traversal algorithm [4
* The Order algorithm maintains an order for all vertices (k-order) to reduce the size of V*

[4] Yikai Zhang, Jeffrey Xu Yu, Ying Zhang, and Lu Qin. A fast order-based approach for core maintenance.
|ICDE, pages 337-348, 2017.
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Order vs Traversal

V: ={a}
VvVt ={a,b,c, d}

Traversal

‘ core number 1

V=
Order waj
V+ _ {a} . core number 2

. core number 3
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Parallel k-Core Main

LeNnance

* The existing parallel methods
algorithm

'/, 8, 9] are based on Traversal

* We first propose a Simplified-Order algorithm
* Then, we propose a Parallel-Order algorithm

[7] Na Wang, Dongxiao Yu, Hai Jin, Chen Qian, Xia Xie, and Qiang-Sheng Hua. Parallel algorithm for core maintenance in dynamic graphs.
In 2017 IEEE 37th International Conference on Distributed Computing Systems (ICDCS), pages 2366-2371. IEEE, 2017.

[8] Hai Jin, Na Wang, Dongxiao Yu, Qiang Sheng Hua, Xuanhua Shi, and Xia Xie. Core Maintenance in Dynamic Graphs: A
Parallel Approach Based on Matching. IEEE Transactions on Parallel and Distributed Systems, 29(11):2416-2428, nov 2018.

[9] Qiang-Sheng Hua, Yuliang Shi, Dongxiao Yu, Hai Jin, Jiguo Yu,

Zhipen Cali, Xiuzhen Cheng, and Hanhua Chen. Faster parallel

core maintenance algorithms in dynamic graphs. IEEE Transactions on Parallel and Distributed Systems, 31(6):1287-1300, 2019.
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The Studies of k-Core Maintenance

Parallel

Na Wang et Hailin etal, Qiang-Sheng
al., Superior Matching Hua et al.,
Edge Set Edge Set Edge Join,
ICDCS [7] ICDCS [8] TPDS. [9]

[ e
o

Sequential

Ahmet Erdem
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Bin Guo et al.,
Parallel Order

[10]
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Ahmet Erdem
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*Bin Guo et al,,

Sariytice et al., Sariyice et Zlhz?ri1g ot = Simplifie-Order
Streaming al., Traversal , 5713 -
VLDB[5] VLDB@[6] al.”Order L] :
| ICDE[4] : | .

2013 2016 2017 2018 2019 % 2022 i
We are here
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Time Complexity

Worst-case (O) Best-case (O)
Parallel %% D W D
Insert m’|E*|log |[E*| m’|E*|log|E*| | m’|E*|log |[E*| |E*|log|E*|+m’|V¥|
Remove m’|E*| m’|E¥| m’|E¥| |E*| + m’|V¥|

Table 1: The worst-case and best-case work, depth complexities of our parallel core maintenance operations for inserting and removing a
batch of edges, where m’ is the total number of edges that are inserted or removed in parallel, E* is adjacent edges for all vertices in V*, and
E* is adjacent edges for all vertices in V*.

* |n the worst case, all workers execute as one
blocking chain and reduce to sequential version

* The worst case I1s unlikely to happen over real graphs
* The best case has high speedups

14



Tested Graphs

Graph | n=1|v| m = |E|

1,000,000 8,000,000

1,000,000 8,000,000
1,000,000 8,000,000

AvgDeg Maxk

Synthetic Network

J \

_ Static

Graphs

Dynamic

B Graphs

* For static graphs, randomly select 100,000 edges for insertion and removal
* For dynamic graphs, insert or remove 100,000 edges by their time stamps

* Evaluate the the accumulated running times

15



—e— Ourl @ OurR —¥— JEI ¥ JER —4— Ml ~A+ MR —— Ol - OR —— Tl =+ TR

livej patent

o Ourl | Our Insert

OurR | Our Remove

10 S S S S —— JEI Join Edge Insert
-®- OurR —~¥— JEI  -~¥- JER —&— Ml A MR —— Ol = OR —— TI =+ TR ' JER Join Edge Remove
'] - ‘| I B i, S N I S G B
= T - e e e L Ml Match Edge Insert
wiki-talk-en
roadNet-CA T 1 MR Match Edge Remove

104 1 A—h— pe e A A 4 Ol Sequential Order Insert

—— : - OR | Sequential Order Remove
""" Tl Sequential Traversal Insert
TR Sequential Traversal Remove

Running time (ms)

* With 1-worker, Ourl and OurR
is faster than JEI and JER

* With 16-worker, Ourl and OurR

always has higher speedups
than JEI and JER

16



My Third Work: Parallel
Order Maintenance

* Maintain an order of all items in 8 — 2
parallel by three operations:
* Inserting, @)
* deleting, and ?
* comparing the order for two items [14] 9
* All three operations cost amortized
0(1) time

* We are the first to propose a
parallel version

[14] Bin Guo and Emil Sekerinski. “New Parallel Order Maintenance Data Structure.” arXiv preprint
arXiv:2208.07800 (2022).

17



My Forth Work: Parallel Graph Trimming

* Repeatedly remove all vertices without out-going edges [11]
* We compare three algorithms: AC3Trim, AC4Trim and AC6Trim.

* Can be used on parallel SCC decomposition to remove size-1 SCC.

[11] “Efficient parallel graph trimming by arc-consistency” Bin Guo,
Emil Sekerinski - The Journal of Supercomputing, 2022

18
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Insert , Order Delete Mixed
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(a) The running times
Insert Order Delete
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(b) The speedups
Insert 10 million items the Order list No Case 10 million random position, no relabel
Compare the Order of 10 million pair of items - "
Few Case 1 million random position, few relabel

Delete 10 million Items

Insert 10 million items, mixed with 100 million
Order operations

Many Case | 1000 random position, many relablel

Max Case 1 random posion, maximum relabale
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