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1. What Is Graph Pattern Match 
Queries?

• Graph is an important data 
structure for many 
applications like social 
network.

• For example, “Facebook” is 
one of the largest social 
network which has 2.2 
billion monthly active users.
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• 𝛿 is	the	shortest-path	distance	limitation	and	Δ ≥ 𝛿.
• 𝑅$% : Original relations; 𝑅$%& : filtered by Domain Filtering; 
𝑅$%&& : filtered by Relation Filtering.
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3. Δ-Transitive Closure Construction
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An example of weighted labeled data graph 
𝐺 with 10 vertices labeled by A, B, C, D.
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• Transitive Closure 𝑮∗: each pair of vertices (𝒖, 𝒖′) are connected by an 
edge if they are reachable, which is weighted by 𝑫𝒊𝒔𝒕𝒔𝒑(𝒖, 𝒖′).  

• For example, for the pair of vertices (𝑢$, 𝑢$%), it has no edge in 𝐺. But in 
𝐺∗, the new edge (𝑢$, 𝑢$%) is added weighted by 𝐷𝑖𝑠𝑡&' 𝑢, 𝑢( = 5.
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• 𝚫-Transitive Closure 𝑮𝚫: each pair of vertices (𝒖, 𝒖′) are connected by 
an edge if 𝑫𝒊𝒔𝒕𝒔𝒑 𝒖, 𝒖( ≤ 𝚫, which is weighted by 𝑫𝒊𝒔𝒕𝒔𝒑 𝒖, 𝒖( .  

• For example, for the pair of vertices (𝑢$, 𝑢$%), it has no edge in 𝐺. In 𝐺*, 
the edge (𝑢$, 𝑢$%)	is not added since 𝐷𝑖𝑠𝑡&' 𝑢, 𝑢( = 5 > Δ.

• For the pair of vertices (𝑢+, 𝑢,), it has no edge in 𝐺. But in 𝐺*, the new 
edge (𝑢+, 𝑢,)	is added since 𝐷𝑖𝑠𝑡&' 𝑢, 𝑢( = 2 ≤ Δ.
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• Obviously, our 𝚫-Transitive Closure 𝑮𝚫
require less running time and space than the 
traditional Transitive Closure 𝑮∗. 

• 𝑮𝚫 can be generated offline as index and spend 
no time during queries for relation 
construction. 
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4. Domain Filtering
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⋈ =
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𝑅%&'

⋈
C A
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𝑅'%

=
A B C
8 9 10
7 9 4

𝑅%&'

• It need 𝑅56 ⋅
𝑅67 ⋅ 𝑅75 =
4×3×3 = 36 times 
computation.

• Theoretically, the 
Natural Joins are 
NP-hard problem 
with running time 
𝑂(∏$% |𝑅$%|).

2 matching 
results

We can do 
better!
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• DomainFiltering: Each 
𝒖 ∈ 𝑹𝒊 must appear in all 
relations 𝑹𝒊𝒋 where 𝒗𝒊, 𝒗𝒋 ∈
𝑬(𝑸) (𝒋 = 𝟏,… , 𝒏). If not, it 
should be removed.

Relation 
Graph.

• For example, 𝑢( ∈ 𝑅% appear in 
both 𝑅%& and 𝑅'%, so do 
nothing. 

• But 𝑢& not appear in 𝑅'%, so it 
should be removed. 
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(1) 𝑢! not appear in 𝑅"#, so 𝑢! is 
removed.

(2) Removing 𝑢! causes 𝑢" not appear in 
𝑅!", so 𝑢" is removed.

(3) Removing 𝑢" causes 𝑢$ not appear in 
𝑅#!, so 𝑢$ is removed.

(4) All 𝑢 ∈ 𝑅! appear in 𝑅!". 
The relations participating natural 
joins are reduced.
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• Both running time and 
space are bounded by 
𝑂(𝑚𝐷/).

• It is much more efficient 
than Natural Joins.

• It is valuable to do 
DomainFiltering before 
Natural Joins.

𝑚 is the number of 
edges in query 𝑄.
𝐷 = max{|𝑅"|}.

We can further 
do better!



5. Relation Filtering
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• RelationFiltering: For each 𝒖, 𝒖( ∈ 𝑹𝒊𝒋, there must be a 
𝒖(( ∈ 𝑹𝒌 such that 𝒖, 𝒖(( ∈ 𝑹𝒊𝒌 and 𝒖(, 𝒖(( ∈ 𝑹𝒋𝒌. If 
not, 𝒖, 𝒖( will be removed from 𝑹𝒊𝒋.

• For example, the tuple 𝑢), 𝑢* ∈ 𝑅%& has 𝑢%+ ∈ 𝑅' such that 
𝑢), 𝑢%+ ∈ 𝑅%' and 𝑢*, 𝑢%+ ∈ 𝑅&', so do nothing.

• The tuple 𝑢), 𝑢, ∈ 𝑅%& do not have such 𝑢 ∈ 𝑅', so removed.
• The tuple 𝑢,, 𝑢- ∈ 𝑅&' do not have such 𝑢 ∈ 𝑅%, so removed. 
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satisfied, so they are removed. 

(2) Removing (𝑢), 𝑢,) and (𝑢,, 𝑢-)
causes 𝑢, ∈ 𝑅& not satisfy 𝑅%& and 𝑅&'
(DomainFiltering), so 𝑢, is removed.
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(3) all tuples in 𝑅!" are satisfied.
The relations participating natural 
joins are further reduced.

• Both running time and space 
are bounded by 𝑂(𝑛1𝐷(1).

• It is much more efficient than 
Natural Joins. 

• It is valuable to do 
RelationFiltering after 
DomainFilering before 
Natural Joins.

𝑛 is the number 
of vertices in 
query 𝑄. 
𝐷# = max{|𝑅"|}
filtered by 
DomainFiltering.
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6. Related Work
• R-join (Reachability Join) [1]：

Ø The 2-hop labeling [3,4] is used to calculate the reachability 
relations, which can be extended to shortest-path distance relations.

Ø The 2-hop labeling need too much indexing time and space.
• MD-join (Multi Distance-based Join) [2].

Ø the filtering technique LLR-embedding [5] is used to speedup the 
shortest-path distance calculation. 

Ø The 2-hop labeling is used to verify the shortest-path distance. 
Ø The LLR-embedding and 2-hop labeling need too much indexing 

time and space.
• Both R-join and MD-join has no filtering and speed-up in Natural joins.
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6. Experiments
• All methods are implemented by C++ on Visual 

Studio 2013.
• All methods run on a desktop computer with 

win10 64-bit operating system, Intel I7-7700 
3.6GHz CPU and 14G RAM. 

• All methods are evaluated over a variety of real 
data graphs. 

• We expect to see our method has less index time 
and space, and also better performance, compared 
with other methods.
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Relation Construction
(RC)

Matching Result 
Construction

(MC)
ER-join 

(Extend Reachability 
Join) [1]

2-hop labeling [3,4] Natural Join

MD-join 
(Multi Distance-based 

Join) [2]

2-hop labeling [3,4]
LLR-embedding [5] Natural Join

Ours 𝐺$
Domain Filtering
Relation Filtering

Natural Join

• All tested methods each include two parts: Relation 
construction and Matching Result Construction.



3/24/2018 21

index (offline) query (online)

algorithms time space algorithms time

ER-join
2-hop labeling 𝑂(𝑁%) 𝑂(𝑁 𝑀)

Extend R-join
(ER-join)

𝑂()
&'

𝑀 𝑅& |𝑅'|	)

Natural Join (N-join) 𝑂(,
&'
|𝑅&'|)

MD-join
2-hop labeling 𝑂(𝑁%) 𝑂(𝑁 𝑀) D-join 𝑂()

&'
𝑀 𝑅& |𝑅'|	)

LLE-Embedding 𝑂(𝑁!𝑙𝑜𝑔𝑁) 𝑂(𝑁𝑙𝑜𝑔!𝑁) Natural Join (N-join) 𝑂(,
&'
|𝑅&'|)

Ours

𝐺( by Dijkstra 𝑂(𝑁𝑑(𝑙𝑜𝑔𝑁) 𝑂(𝑁𝑑() Domain Filtering(DF) 𝑂(𝑚𝐷!)

Relation Filtering(RF) 𝑂(𝑛"𝐷)")

Natural Join (N-join) 𝑂(,
&'
|𝑅&')) |)

• The theoretical running index and query time.
• Our DomainFiltering and RelationFiltring are much faster than Natural Joins.
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data graphs
direct

ed
𝑁 =
|𝑉(𝐺)|

𝑀 =
|𝐸(𝐺)|

labeled
Label 
Size

weighted
avg.

degree
density

avg.
|𝑅 𝑙 |

yeast no 2,361 7,182 yes 13 no 6.1 2.58E-03 196.8
wikiVote yes 7,115 103,689 no 100 no 14.6 2.05E-03 71.2

citeHepph yes 34,546 421,578 yes 124 1-1000 12.2 5.33E-04 278.6
webStanford yes 281,903 2,312,497 no 100 no 8.2 3.53E-04 2,919.0

comDBLP no 317,080 1,049,866 no 500 no 6.6 2.67E-04 23.5
webNotreDame yes 325,729 1,497,134 no 100 1-1000 4.5 2.91E-05 3,257.3

citeseer yes 384,413 1,751,463 no 500 no 4.6 2.09E-05 768.8
webBerkStan yes 685,230 7,600,595 no 500 no 11.1 1.41E-05 3,426.2

webGoogle yes 875,713 5,105,039 no 500 1-1000 5.8 1.19E-05 1751.4
roadNetPA no 1,088,092 1,541,898 no 50 no 2.8 1.62E-05 21761.8
roadNetTX no 1,379,917 1,921,660 no 20 1-1000 2.8 6.66E-06 68995.8
citePatterns yes 3,774,768 16,518,948 no 100 1-1000 4.4 2.60E-06 37747.7

• There are totally 12 tested real graphs.
• All sorted by the number of vertices. 
• The last 3 graphs are much larger than others.
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• Our method has much less index time.
• The index times of ER-join and MD-join for 3 largest 

graphs are not listed here. All of them  over 3 hours.

Exp. 1.1
Index Time



3/24/2018 24

• Our method has much less index size.
• The index size of 3 largest graphs are not listed, 

since they over 3 hours.
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• Fixed query graph:
• For unweighted graph 𝛿 = 1,2,3,4; for weighted graphs 𝛿 =

200,400,600,800.
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Exp. 2.1(a)
Query times 
(Second) by 
varying 𝛿. 
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• Our method is much faster than others, especially when 𝛿 is small.
• Our method even faster than Natural Joins since it does not use time for 

relation construction and our DomainFiltering and RelationFiltering can 
efficiently reduce relations participating Natural Joins.
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(j) roadNetPA (k) roadNetTX (l) citePatterns

(g) citeseer (h) webBerkStan (i) webGoogle

Exp. 2.1(b)
Query times 
(Second) by 
varying 𝛿. 
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Exp. 2.2(a) 
Query times 
(Second) of 
our method 
by varying 𝛿.

• Fix query graph:
• For unweighted graph 𝛿 = 1,2,3,4; for weighted graphs 
𝛿 = 200,400,600,800.
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• Our DomainFiltering and RelationFiltering are efficient, nearly 
linearly increasing with 𝛿.

• Most of running time is spent on Natural Joins after filtering.
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Exp. 2.2(b)
Query times 
(Second) of 
our method 
by varying 𝛿.
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• The DomainFiltering can remove much more useless tuples than 
RelationFiltering.

• When δ is smaller only a few tuples are left after DF&RF, which leads to 
great speed-up to the Natural Joins. 
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δ = 1(200) δ = 2(400) δ = 3(600) δ = 4(800)

graphs total
after 
DF

after 
RF

total
after 
DF

after 
RF

total
after 
DF

after 
RF

total
after 
DF

after 
RF

yeast 540 9 9 7440 3220 2822 44442 22113 22049 125000 62470 62470
wikiVote 60 0 0 1407 1266 1145 6233 5794 5774 10461 9794 9794

citeHepph 308 0 0 2146 1386 392 7011 6347 4356 15417 14893 12954
webStanford 388 18 18 1466 127 127 3214 1092 632 6628 3819 2407

comDBLP 108 0 0 1140 14 14 12926 4832 3257 120904 59709 58617
webNotreDame 134 12 12 600 267 25 1886 1196 66 4296 3165 170

citeseer 45 0 0 536 5 5 4268 2626 504 28259 27217 22774
webBerkStan 264 0 0 1215 159 150 2782 693 529 5449 2090 1342

webGoogle 175 9 9 929 68 68 3359 1168 843 9161 5924 4397
roadNetPA 12380 0 0 35144 98 98 71500 1114 1113 125004 5488 5405
roadNetTX 3776 0 0 9624 0 0 18200 42 42 29860 131 131
citePatterns 5538 5 5 18378 40 30 44625 3515 446 92373 24361 2818

Exp. 2.3 The total tuple numbers of relations by varying 𝛿. 
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• Vary query graph:                                                 with the number of edges 
= 3, 5, 7, 9.

• For unweighted graph fix 𝛿 = 2; for weighted graphs fix 𝛿 = 400.

Exp. 3.1(a) 
Query times 
(Second) of our 
method by 
varying the 
number of 
query edges.
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• Our method has a higher speed-up over Natural 
Joins with the increasing of query edges.
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Exp. 3.1(b) 
Query times 
(Second) of our 
method by 
varying the 
number of query 
edges.
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𝐸 𝑄 = 3 𝐸 𝑄 = 5 𝐸 𝑄 = 7 𝐸 𝑄 = 9
graphs total after DF after RF total after DF after RF total after DF after RF total after DF after RF
yeast 5300 2364 2115 7440 3220 2822 8062 3049 2506 9980 3624 2962

wikiVote 808 741 692 1407 1266 1145 2223 1978 1833 3067 2714 2532
citeHepph 1280 931 336 2146 1386 392 2821 1676 423 3435 1885 479

webStanford 945 197 194 1466 127 127 2171 92 91 3011 44 44
comDBLP 708 59 56 1140 14 14 1532 0 0 1884 0 0

webNotreDame 398 208 33 600 267 25 746 35 34 1037 47 46
citeseer 319 7 6 536 5 5 786 0 0 1017 0 0

webBerkStan 560 109 91 1215 159 150 1736 223 214 2058 227 227
webGoogle 511 88 76 929 68 68 1254 62 62 1549 34 34
roadNetPA 21148 789 788 35144 98 98 49246 7 7 63686 0 0
roadNetTX 5914 114 114 9624 0 0 13588 0 0 17534 0 0
citePatterns 11015 458 362 18378 40 30 25810 10 10 33262 0 0
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• More query edges produce more total tuples in all relations. 

• But more query edges lead to more restrictions. Therefore, DomainFiltering
and RelationFiltering can filter more useless tuples.

Exp. 3.2 The total tuple numbers of relations by varying the 
number of query edges. 



9. Future Work
• The 𝐺" is proposed to the relation construction. 

The DomainFiltering and RelationFiltering is 
proposed to reduce the searching space of final 
Natural Join.

• However, the index time and size should be 
optimized in order to well handle large data 
graphs.

• Also, the shortest-path distance limitation may be 
extended to other kind of distance.
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Thanks!
Bin Guo
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